[规范][光伏][笔记] 光伏支架风荷载取值 [Wind load value of photovoltaic support]

实干、实践、积累、思考、创新。   随后更新……       相关博文( Related Topics) [01] [工具][软件][规范] 广东省标准《高层建筑混凝土结构设计规范》反应谱计算工具 [02] [结构力学][结构设计] 两端固支梁弯矩为0点距端部的距离 [03] [抗震][结构设计][规范] 非抗震设计情况下混凝土柱的“轴压比”可达多大? [04] [结构设计][动力学] YJK中CQC振型组合地震力的复核 [05] [结构设计][楼梯] 混凝土楼梯施工图笔记 [06] [结构][设计][规范] 关于结构倾覆力矩计算公式的另一种理解 [07] [结构设计][规范] 结构整体倾覆力矩及抗倾覆力矩的计算——以YJK为例 …

[笔记][结构] 结构设计与碳排放

实干、实践、积累、思考、创新。 简单笔记: 对结构来说,就是生产建材和建造房屋过程中的碳排放,比如木材的碳排放就显著低于钢材和混凝土,预制装配式施工节水节电,碳排放就低于现浇,有国家规范依据。 钢结构碳排放也好于混凝土。 通常是建筑专业需要校核的指标。结构专业配合。 微信公众号 ( Wechat Subscription) 欢迎关注 “结构之旅” 微信公众号

[下载][编程][结构][设计] PELL: 隔墙线荷载/面荷载计算工具 (Partitions Equivalent Line Load)

实干、实践、积累、思考、创新。 程序图标 ( Program Icon ): 程序介绍 ( Program Introduction) 隔墙线荷载计算、隔墙面荷载计算。 Partition wall line load calculation, partition wall area load calculation 程序界面 ( Program Interface )     下载 ( Download ) (  软件是免费的,如果需要这个软件,请在评论区留下您的评论,软件会发送到您的评论邮箱,敬请尊重劳动成果 !!)   …

[结构][设计][笔记] 转角窗?转角折梁?受力过大?抗与放?

实干、实践、积累、思考、创新。 小伙伴计算模型,在检查转角窗,发现转角折梁受力很大。这种转角位置的折梁悬受力大,本质上主要是由于1和2两片墙转角引起的竖向变形差引起,在角点上给梁点铰的情况下,其实是两根悬挑梁端部竖向反向变形的过程,一根梁顶部受压,另一根梁底部受拉,两根梁剪力都很大,且反向。这个时候只需要将其中一根梁两端点铰,梁跨中钢筋配足,另外一个根梁按悬臂梁,面筋或底筋配足似乎就能解决…….硬按两端悬挑梁配反而可能不利,可能形成三铰机构。   总体上,上图传力其实非常不好,如果能把右边悬挑段做成剪力墙,就比较合理。 关于转角窗的做法,找到的资料都是建议加强: 朱炳寅《建筑结构设计问答与分析》 国标图集《G329-1:建筑物抗震构造详图(多层和高层钢筋混凝土房屋)》 民用建筑工程设计常见问题分析及图示(混凝土结构)05SG109-3 总体上,规范是不建议做这种转角窗,实际是一种取消角部剪力墙,角部传力不连续的操作。对于转角窗,规范统一建议是加强。可能考虑到转角窗部位是结构的薄弱部位,除了前面分析的面外受力问题外,还有其他诸如墙体传力连续性和整体性等方面的考虑,有点类似核心筒外框建议闭合一样,依然宜做强。从前面的例子来看,也正是因为转角折梁起了协调两片剪力墙1与2的作用,所以才导致折梁受力很大,从这个角度来看,似乎得具体情况具体分析,到底这根这个角部区域及折梁是否能起到这个协调两片剪力墙变形的作用,能抗则加强,实在不能抗,加强了也是白搭,那还不如先释放?然后再回到前面的例子,从加强角度应该当成一根折梁,从放的角度应该选一根梁两边点铰,仅在角部给梁点铰的这种做法不合理。 抗与放永远是个矛盾!! 相关博文( Related Topics) [01] [工具][软件][规范] 广东省标准《高层建筑混凝土结构设计规范》反应谱计算工具 [02] [结构力学][结构设计] 两端固支梁弯矩为0点距端部的距离 [03] [抗震][结构设计][规范] 非抗震设计情况下混凝土柱的“轴压比”可达多大? [04] [结构设计][动力学] YJK中CQC振型组合地震力的复核 [05] [结构设计][楼梯] 混凝土楼梯施工图笔记 [06] [结构][设计][规范] …

[结构][笔记][材料] 矩形截面与H形截面的抗弯能力对比 ( Bending Resistance of Rectangular Section and H-shaped Section)

实干、实践、积累、思考、创新。 矩形截面与H形截面的抗弯能力 ( Bending Resistance of Rectangular Section and H-shaped Section),具体分析如下图。 (1)高度越高,应力越小。虽然截面高,力臂也增大,但是惯性矩增大更快。平截面假定情况下,高度加高了,产生应力的面积增大了,总弯矩不变,最大应力自然要减小。 (2)同等高、宽,抵抗同样的弯矩,H形截面材料用量只有矩形截面材料用量的1/3 (3)以上都是简化对比,未考虑稳定,未考虑工字钢腹板等等这些因素。 相关博文( Related Topics) [01] [工具][软件][规范] 广东省标准《高层建筑混凝土结构设计规范》反应谱计算工具 [02] [结构力学][结构设计] 两端固支梁弯矩为0点距端部的距离 [03] [抗震][结构设计][规范] 非抗震设计情况下混凝土柱的“轴压比”可达多大? [04] [结构设计][动力学] YJK中CQC振型组合地震力的复核 [05] …

[规范][结构][设计] 剪力墙边缘构件的尺度问题 (The dimension problem of the boundary element of the shear wall)

实干、实践、积累、思考、创新。 如下图,一图胜千言。 相关博文( Related Topics) [01] [工具][软件][规范] 广东省标准《高层建筑混凝土结构设计规范》反应谱计算工具 [02] [结构力学][结构设计] 两端固支梁弯矩为0点距端部的距离 [03] [抗震][结构设计][规范] 非抗震设计情况下混凝土柱的“轴压比”可达多大? [04] [结构设计][动力学] YJK中CQC振型组合地震力的复核 [05] [结构设计][楼梯] 混凝土楼梯施工图笔记 [06] [结构][设计][规范] 关于结构倾覆力矩计算公式的另一种理解 [07] [结构设计][规范] 结构整体倾覆力矩及抗倾覆力矩的计算——以YJK为例 [08] [YJK][结构设计] YJK中的地下室侧土侧向约束土弹簧测试 [09] …

[结构][设计][规范] 关于结构倾覆力矩计算公式的另一种理解

实干、实践、积累、思考、创新。 说到结构倾覆力矩,搞过设计的朋友可能最先会想到以下这个公式: $${M_{\rm{c}}} = \sum\limits_{i = 1}^n {\sum\limits_{j = 1}^m {{V_{ij}}{h_i}} } $$ 该公式来源于《抗规》6.1.3条的条文说明,原条文其中,\(M_{\rm{c}}\)为规定侧向力作用下结构底层的框架倾覆力矩,\(V_{ij}\)表示第i层第j根框架柱的计算地震力,\(h_i\)为结构第i层的层高,为框架i层的柱的根数,为结构的层数。若将该公式推广到通用的情况,不仅是计算底层的倾覆弯矩,而是用于计算特定楼层的倾覆弯矩,同时将层高放到第一层连加符号的外面,则可得到公式\({M_j} = \sum\limits_{i = j}^n {{V_i}{h_i}}\),其中,\({V_i}\)表示结构第i层的楼层剪力,\({h_i}\)为结构第i层的层高,\({M_j}\)为结构第j层的倾覆弯矩,该公式指的是结构第j层的倾覆弯矩等于第j层及以上楼层的剪力与层高乘积的叠加。 最初看\({M_j} = \sum\limits_{i = j}^n {{V_i}{h_i}}\)这个公式时,是及其不直观的,因为说到倾覆力矩,可能大多数人最开始想到的都是侧向力乘以力臂的方式,因为我们最初学力学的时候就是这样,力乘以力臂就形成弯矩。接下来我们不妨重新来推导一次这个很多人都推导过的公式,看怎么从侧向力乘以力臂一步步推导到剪力乘以层高。 如下图所示,以一个三层高的结构为例,各层层高分别为h1,h2,h3,各楼层的侧向力分别为F1,F2,F3,各层的楼层剪力分别为V1,V2,V3。,相应结构各层的倾覆弯矩分别为M1,M2,M3。 图1 倾覆力矩模型 根据力与力臂乘积为力矩及外力与剪力之间的关系,我们可以得以下推导: (1)第3层的倾覆弯矩 …

[结构][YJK][设计] “一次性加载”、“模拟施工1加载”及“模拟施工3加载”的差别及案例测算 ( Construction Simulation)

实干、实践、积累、思考、创新。 由于这个主题是与施工过程相关的,这里先引入施工过程的相关概念。《高规》5.1.8:高层建筑结构在进行重力荷载作用效应分析时,柱、墙、斜撑等构件的轴向变形宜采用适当的计算模型考虑施工过程的影响;复杂高层建筑及房屋高度大于150m的其他高层建筑结构,应考虑施工过程的影响。 从计算上讲,这块内容可以统称为施工模拟计算,施工模拟计算是一个很复杂的专题,包括很多复杂的内容,这里仅讨论常用设计软件(YJK、PKPM)在考虑施工次序对恒载计算进行处理时的方法,主要包括:一次性加载、模拟施工1、模拟施工3。这也是平时我们在设计项目时遇到最多的。主要测算这几种算法的区别,并与设想进行对比。边做 边思考 边总结…… 1.1 一次性加载 一次性加载简单说就是不做任何处理,一次性整体形成刚度,恒载一次性施加。从计算上讲,就是直接形成结构整体刚度,不考虑施工顺序,荷载列向量也一次形成。 1.2 模拟施工1 “模拟施工加载1”与“模拟施工加载2”算法均采用了一次集成结构刚度,分层施加恒载,只计入加载层以下的节点位移量和构件内力的做法,来近似模拟考虑施工过程的结构受力。二者不同之处在于,“模拟施工2”在集成总刚时,对墙柱的竖向刚度进行了放大,以缩小墙、柱之间的轴向变形差异,更合理的给基础传递荷载。(摘自PKPM帮助文档,目前软中已经取消了 “模拟施工加载2”这个选项了。) 图1.2-1 “模拟施工1”的刚度和加载模式 从上图也可以看出,“模拟施工1”的加载模式实际上是完全虚构的一种模式,实际上压根不存在。 1.3 模拟施工3 “模拟施工3”是采用由用户指定施工次序的分层集成刚度、分层加载进行恒载下内力计算。该方法可以同时考虑刚度的逐层形成及荷载的逐层累加。“施工模拟3”是对“施工模拟1”的改进,用分层刚度取代了“施工模拟1”中的整体刚度。模拟施工3采用了分层刚度分层加载的模型,这种方式假定每个楼层加载时,它下面的楼层已经施工完毕,由于已经在楼层平面处找平,该层加载时下部没有变形,下面各层的受力变形不会影响到本层以上各层,因此避开了一次性加载常见的梁受力异常的现象(如中柱处的梁负弯矩很小甚至为正等)。这种模式下,该层的受力和位移变形主要由该层及其以上各层的受力和刚度决定。用这种方式进行结构分析需要形成最多N(总施工步数)个不同结构的刚度阵,解N次方程,计算量相应增加。(摘自YJK及PKPM帮助文档) 图1.3-1 “模拟施工3”的刚度和加载模式 1.4 测算实例 一个最简单的10层结构,4个柱,楼面恒载加很大,尽量降低自重的影响。不考虑P-DELTA(暂且先避免非线性因素的影响),分别采用一次性加载、模拟施工1及模拟施工3加载进行计算,并统计结构的竖向位移。 图 1.4-1 算例模型 3种方法计算得恒载下的竖向位移结果如下表: 表1.4-1 不同算法恒载作用下的楼层竖向位移 绘成图如下: 图 1.4-2 不同算法楼层恒载竖向位移(左:一次性加载;中:模拟施工1;右:模拟施工3) 由图可见以下三点: (1)“一次性加载”构件的竖向位移是底部小,顶部大。 (2)“模拟施工1”加载下,构件的竖向位移也是底部小,顶部大。 “模拟施工1”及“一次性加载”的楼层竖向位移居然是相同的!!(一开始看起来很惊讶,不过后面分析完就清楚了。) (3)“模拟施工3”加载下,构件的竖向位移是中部楼层大,顶部和底部楼层小,竖向位移的楼层曲线的形状为中间凸出。 以下对这3个问题逐个进行解答,我们直接通过手算算例来反演上述结果,并同时给出一些其他信息。首先假定每一层恒载作用在该层产生的位移为1,以下给出不同算法下10层结构恒载作用下的竖向位移结果。 1.4.1  “一次性加载”手算反演   首先进行“一次性加载”的手算。为便于和后续“模拟施工1”及“模拟施工3”的计算进行对比,这里将“一次性加载”的恒载分10次施加,第一次施加首层荷载,第二次施加二层的荷载,以此类推,第10层施加第10层的荷载,将每次施加荷载引起的竖向位移进行叠加可得到总位移。 这里必须解释一下,虽然“一次加载”是在一次性形成整体刚度的清苦下一次性是施加所有层的荷载,但由于体系处于线性,“线性体系满足叠加原理”,因此这里可以把10层荷载分10次施加再叠加。 …

[笔记][算例] “剪切型”与”弯曲型”位移曲线的位移角特性

实干、实践、积累、思考、创新。 如题,直接做两个简单算例测算并可看出效果。左边是一个框架结构,代表剪切型位移曲线,右边是一个框筒结构,把筒做得强点,框架搞弱点,代表弯曲型位移曲线​,实际还是有点弯剪型特性,不过不影响分析。 测算模型 风楼层剪力 风楼层位移曲线 风楼层位移角曲线 地震作用下情况也类似 地震剪力曲线 地震位移曲线 地震位移角曲线 从以上对比可知,对于位移曲线为“剪切型”的框架结构,最大位移角集中楼层底部,楼层越高位移角越小,因为楼层越高,侧向力越小,而对于位移曲线为“弯曲型”的剪力墙结构,楼层越高,位移角可能越大,主要原因是楼层越高,因下一层弯曲转角引起的无害位移角越大,实际有害位移角并不是越来越大。由此也可以判断,对于位移曲线为“弯剪型”的结构,位移角最大值可能会出现在中部。而对于实际复杂项目,位移角曲线形状就有很多种可能了。​ 相关话题 ( Related Topics) [01]. [Tool] YJK(盈建科)桩荷载统计工具 [02]. YJK转PKPM出现“访问XX.jws发生未知错误”的解决办法 [03]. YJK(盈建科)的三处材料定义 [04]. YJK(盈建科)截面建模工具-快速导入 [05]. YJK1.7人工波功能测试 [06]. YJK地震波反应谱分析与地震波选取 [07]. YTP – A Pre Process Program for PERFORM-3D …

[笔记][结构] 斜柱方案受力分析点

实干、实践、积累、思考、创新。 以前记录过。不够这次有其他体会,概括一下。 主要有3点注意: (1)竖向传力路径 (2)水平力传力路径 具体又包括: (1)关联拉梁的拉力 (2)关联抗侧构件的抗剪 (3)竖向力传递路径上构件的承载力 相关博文( Related Topics) [01] [工具][软件][规范] 广东省标准《高层建筑混凝土结构设计规范》反应谱计算工具 [02] [结构力学][结构设计] 两端固支梁弯矩为0点距端部的距离 [03] [抗震][结构设计][规范] 非抗震设计情况下混凝土柱的“轴压比”可达多大? [04] [结构设计][动力学] YJK中CQC振型组合地震力的复核 [05] [结构设计][楼梯] 混凝土楼梯施工图笔记 [06] [结构][设计][规范] 关于结构倾覆力矩计算公式的另一种理解 …

[抗震][结构设计][规范] 非抗震设计情况下混凝土柱的“轴压比”可达多大?

实干、实践、积累、思考、创新。 题目可能好像提的不是太专业,因为通常轴压比说的是抗震的情况下的概念,所以这里加上了双引号。不过,不要在意这些细节。起因是,小伙伴在群里讨论轴压比的相关问题:混凝土柱的轴压比是不是不能大于1.0,非抗震情况下是不是不能比1.0大太多? 先引出轴压比的公式,对于普通混凝土柱,设计轴压比的定义为 N/(fc*A)。N为设计轴力(抗规为考虑地震组合下的轴力值),fc为混凝土轴心抗压强度,A为混凝土截面面积。 这里面有两个问题: (1)轴压比是否大于1.0? (2)轴压比如果能大于1.0,能大多少? 在混凝土结构设计中,构件的轴压比,是抗震设计时提出的概念。在地震作用下,构件存在往复变形,限制竖向RC构件的轴压比不过大主要是为了提高构件在往复荷载作用下的延性。因为,在相同构件配筋条件下,轴压比越大,构件越倾向于小偏心受压破坏(脆性),轴压比越小,越倾向于大偏心受压破坏(延性好)。在非抗震设计情况下,因为构件不存在地震情况下的往复荷载作用,因此对延性无直接控制要求,侧重强调构件的承载力,规范对“轴压比”无直接控制。 限制轴压比,主要是控制构件延性。从轴压比的公式也可以看出,轴压比等于1.0也不是构件破坏的临界条件,因为公式没有考虑钢筋的作用,1.0仅表示压力全为混凝土承担,素混凝土情况下,构件破坏。 因此,问题1的回答是: 轴压比是可以大于1.0的,即便是抗震设计情况下,也可以大于1.0。抗震规范规定,当对柱子采取了可靠的提高延性的加强措施后(如附加芯柱、对柱的箍筋采用螺旋箍加密布置等等),可以提高柱的轴压比限值,最大不大于1.05。 对于问题2,抗震设计时,规范要求不大于1.05,对于非抗震设计的柱子,虽然不直接控制柱的轴压比,但柱的要满足承载力要求,当柱达到极限受压承载力时,也有对应的“轴压比”,此时的“轴压比”可以有多大? 对于常规柱,当柱不受弯仅受压时,即轴心受压时,柱能承受的轴压力最大,轴压比也最大(从PM曲线可知)。 为此,以轴心受压柱为例,通过求解轴心受压柱的承载力,即可反算出非抗震情况下,柱的轴压比。 假定柱子截面尺寸为 500*500,混凝土强度等级为C35,钢筋采用HRB400,层高为3300的底层柱,则依据《混凝土结构设计规范》6.2.15节,在假定柱配筋率的情况下,可反算柱的轴心抗压承载力N,由N可计算对应的“轴压比”。具体计算过程如下: 由以上分析可见:随着配筋率的增加,轴压比线性增加,对于混凝土等级C35,常规配筋率为2~5%的柱,最大轴压比为1.270-1.825之间,最大轴压比均大于1.0,最大为1.825。 采用同样的方式,我们可以获得C35~C60的柱子随着配筋率的变化最大轴压比的变化,如下图所示: 由上图可见,相同配筋率情况下,混凝土等级越大,最大轴压比越小。 将不同混凝土等级5%配筋率情况下柱的最大轴压比数据进行整理,并绘图,结果如下: 由此可见,非抗震情况下,C60柱最大轴压比为1.444,C35柱最大轴压比1.825。由于5%配筋率是一个较大的配筋率,因此,上述5%配筋率反算的柱的最大轴压比,可以认为是一个较大值。 相关博文( Related Topics) [01] [工具][软件][规范] 广东省标准《高层建筑混凝土结构设计规范》反应谱计算工具 [02] [结构力学][结构设计] 两端固支梁弯矩为0点距端部的距离 …

[结构][设计][YJK][软件] 盈建科中的刚性杆和虚梁

坚持实干、坚持一线、坚持积累、坚持思考,坚持创新。 刚性杆对应有限元中的节点自由度束缚,这是在YJK中的一种简化操作。 100*100的梁在YJK中默认为虚梁,虚梁主要用于导荷及楼板分界,也主要是用于导荷。实际不设计这根梁。 刚性杆和虚梁是不同的,要注意哦。 刚性杆要设置材料为刚性杆。 先写到这,填好这个坑,后面有时间在记录一些测试结果。 微信公众号 ( Wechat Subscription) 欢迎关注 “结构之旅” 微信公众号

[YJK][盈建科] 盈建科中剪重比的调整

实干、实践、积累、思考、创新。 总结如下: 软件先计算各层的调整系数,(对于薄弱层会考虑1.15及1.25等系数); 对于加速度段,再判断不小于下方楼层的调整系数。 对于广东高规,当小震弹性计算的基底剪力满足最小地震剪力要求,仅部分楼层不满足要求时,可直接放大这些楼层的地震剪力使之满足要求;当小震弹性计算的基底剪力不满足最小地震剪力要求时,则全部楼层地震剪力均应放大,放大系数 = 规定的最小地震剪力/弹性计算的基底剪力。放大后的基底总剪力宜取按底部简历发算得的总剪力的85%和最小地震剪力的较大值。 微信公众号 ( Wechat Subscription) 欢迎关注 “结构之旅” 微信公众号

[结构设计][规范] 结构整体倾覆力矩及抗倾覆力矩的计算——以YJK为例

实干、实践、积累、思考、创新。 来自小伙伴 邹超(Lucas) 的分享,关于“倾覆力矩”与“抗倾覆力矩”软件电算结果的详尽复核总结。 倾覆力矩计算 M0v=V0(2H/3+C)=G*e0 抗倾覆力矩计算 MR=GB/2 注意: (1)为何风与震的抗倾覆力矩不同? 计算重力G时,对于地震作用下的抗倾覆力矩计算,活荷载取有地震作用组合的重力荷载代表值组合系数0.5(即D+0.5L);对于风荷载作用下的抗倾覆力矩计算,活荷载取组合值系数0.7(即D+0.7L)。故两种作用下软件计算所得抗倾覆力矩有所不同。 (2)每一层质心位置不同,B如何取值? 对于B/2的计算,YJK在计算时,考虑了上部结构质心相对基底偏心的影响,实际质心为各层质心加权平均所得。 算例 1(说明注意 1) Mrx风=(2409+0.7×960)x10x40/2=616200(风X向) Mry风=(2409+0.7×960)x10x16/2=246480(风Y向) Mrx震=(2409+0.5×960)x10x40/2=577800(震X向) Mry震=(2409+0.5×960)x10x16/2=231120(震Y向) 其中 算例2(说明注意2) 相关内容(Related Topics) [00] [YJK][结构设计] 关于各类“刚度比”软件电算结果的详尽复核总结 [01] [抗震设计][结构规范] 规定水平力、倾覆弯矩、振型组合等电算结果的复核总结 [02] [抗震设计][结构规范] …

[规范][结构设计] 关于各类“刚度比”软件电算结果的详尽复核总结

实干、实践、积累、思考、创新。 来自小伙伴 邹超(Lucas) 的分享,关于各类“刚度比”软件电算结果的详尽复核总结。 0.软件中关于刚度比的基本符号定义 Ratx,Raty : X,Y 方向本层塔侧移刚度与下一层相应塔侧移刚度的比值(剪切刚度) Ratx1,Raty1 : X,Y 方向本层塔侧移刚度与上一层相应塔侧移刚度70%的比值或上三层平均侧移刚度80%的比值中之较小者 Ratx2,Raty2 : X,Y 方向本层塔侧移刚度与上一层相应塔侧移刚度90%或者150%比值。150%指嵌固层 RJX1,RJY1,RJZ1: 结构总体坐标系中塔的侧移刚度和扭转刚度(剪切刚度) RJX3,RJY3,RJZ3: 结构总体坐标系中塔的侧移刚度和扭转刚度(地震剪力与地震层间位移的比) 1.楼层侧向刚度比(即为YJK中的“RJX3-地震剪力与地震层间位移的比”) γ1=(ViΔi+1)/(Vi+1Δi)=(Vi/Δi)/(Vi+1/Δi+1) 《抗规》表3.4.3-2中,判断侧向不规则采用此公式。 《高规》3.5.2第1条中,对框架结构,楼层侧向刚度比的计算采用此方法。 理解:定义Ki= Vi/Δi 《高规》附录E E.0.2中,转换层设置在2层以上时,对转换层与其相邻上层的侧向刚度比Ki/Ki+1≥0.6 2. …

[YJK][结构设计] YJK中的地下室侧土侧向约束土弹簧测试

实干、实践、积累、思考、创新。 测试一下YJK(盈建科)对地下室土外墙土的约束的考虑。另外,YJK中影响地下室外墙约束考虑方式的参数主要有两个:(1)地下室是否采用刚性楼板,(2)土弹簧的考虑方式,其中土弹簧包括 1:顶板双向弹簧,2:外墙单压土弹簧 两种方式。 再来个实际工程模型,测试两种算法的计算结果对比,结果可见基本一致: 基本结论是: (1)顶板双向弹簧,土的侧向约束加在楼板位置,且拉压都是弹性。分析也是弹性。顶板双向土弹簧的施加认楼板,施加在楼板标高位置。 (2)外墙单压土弹簧则是认地下室外墙,土弹簧均匀施加在地下室外墙上,与楼板无关,有地下室外墙就施加,而且是考虑单压,计算时是非线性分析,存在非线性迭代。 (3)刚性板情况下,顶板双向弹簧施加在刚性板的中心,弹性板情况下,顶板双向弹簧则均匀施加在楼板节点上。刚性板或弹性板对外墙单压土弹簧没影响,因为都是施加在外墙上。 (4)当地下一层内楼板存在不同标高的情况,顶板双向弹簧可以可分别施加在不同标高的楼板上。 (5)但外墙土压力荷载及土弹簧参数均是基于正负0.000标高来考虑的,虽然荷载施加的位置正确,但是如果存在不同位置土压不同的情况,土弹簧参数及土压力无法区别考虑。 相关内容(Related Topics) [00] [YJK][结构设计] 关于各类“刚度比”软件电算结果的详尽复核总结 [01] [抗震设计][结构规范] 规定水平力、倾覆弯矩、振型组合等电算结果的复核总结 [02] [抗震设计][结构规范] 如何有效考虑结构在地震作用下的“扭转影响”?! [03] [抗震][结构设计] 规范的各种刚度比”Ratx,Ratx1,Ratx2,RJX1,RJX3″及嵌固层 [04] [抗震][结构设计] 关于“扭转效应明显”与“两个水平方向振型参与系数” [05] [结构设计][规范] 结构整体倾覆力矩及抗倾覆力矩的计算——以YJK为例 [06] …

[结构优化][编程][软件] 基于ETABS二次开发的结构优化设计程序及其在实际工程中的应用

实干、实践、积累、思考、创新。 来自小伙伴 黄元根 的分享,结构优化方面的专题。 1. 优化设计程序 1.1 优化设计理论 最优设计是人们在工程技术、科学研究等诸多领域经常遇到的问题,例如结构设计要在满足一定约束条件下所使用材料的总重量最轻。目前实际工程项目中优化问题解决方法一般依据经验积累进行主观判断,随着数学方法和计算机技术的快速进步,用建模和数值求解计算方法将会越来越显示出高效优势。 1.2 优化设计应用 ETABS软件作为国际上结构设计领域应用最广泛的设计软件,其准确性和可操作等方面存在一定优势。同时,ETABS开放二次开发接口,可供用户进行所需功能的开发。在此基础上,基于ETABS二次开发技术和优化算法开发适用于实际工程项目的计算程序,利用结构地震动力响应求解和软件开放性好的优势,可用于结构构件截面灵敏度分析、优化计算等,以实现结构最优设计。基于结构自重最小原则,本优化程序可实现不同类型构件的截面最优设计。 自编优化软件界面 2. 具体工程应用 不同复杂结构项目具有不同特点,其控制性指标往往也不同,结构计算分析需差异化、针对性分析,目前根据实际工程中遇到的优化设计问题,本优化程序可给出以下问题的解决方案: (1) 某高烈度区超高层结构 问题描述:结构地震效应与结构自身质量和刚度两者密切相关,工程中常常遇到增加墙厚位移角反而变大,原因在于墙厚增加后,结构自重增加导致地震力变大;如何在结构刚度与地震力之间平衡显得尤为关键,常规设计做法需要不断调整,费时费力且找不出两者变化规律,优化设计程序给出一种可行解决方案。 解决途径:将最大层间位移角作为约束条件,结构自重最小为优化目标,构件截面尺寸作为变量,实现结构最优设计; 某工程应用: 优化效果:经过结构优化设计后,在减小墙厚情况下,结构最大层间位移角得到减小,原因在于结构各层最大层间位移角分布更加均匀,更加充分利用了层间刚度,即使顶点位移增大。优化后,结构自重和地震作用得到减小,有利于减小结构钢筋用量,结构更加经济高效。 (2) 高度超过500m的某超高层结构 问题描述:项目结构高度达到500米,结构第一周期接近9s。当结构周期为控制因素时,结构周期与结构自重和结构刚度直接相关,如若剪力墙墙厚增加,结构刚度增强,结构周期如何变化难以直观判别,给结构优化设计带来一定难度。 解决途径:将结构周期作为约束条件,结构自重最小为优化目标,构件截面尺寸作为变量,实现结构最优设计; 某工程应用: 优化效果:经过结构优化设计后,直观给出低中高区的不同位置核心筒剪力墙厚度对结构第一周期的敏感性差异,为不同位置/不同区域核心筒墙厚给出不同的调整策略和方向。在设定结构周期以及满足层间位移角前提下,结构自重和结构地震效应同时减小,结构更加经济高效。 (3) 某高位连体结构 …

[论文][Paper] 框架倾覆力矩统一解法在典型结构上的应用 (Application of unified solution method of moment-resisting-frame’s overturning moment)

这是去年,在李总、周总和廖总带领下,对框架倾覆力矩展开了一系列的研究,主要为广东省混凝土高规的修编提供一些理论依据,并提出了框架倾覆力矩统一解法,这篇文章是与常博士参与的一篇论文,是该系列研究中的应用部分,论文对框架倾覆弯矩统一解法进行了研究,我负责将算法编制程序,并加入到 ENGT(建筑结构辅助设计工具集成系统) 程序中,同时应用到实际工程中进行研究。论文收录在 建筑结构 2020年04期 RBS事务所专刊中。 【题目】 框架倾覆力矩统一解法在典型结构上的应用(Application of unified solution method of moment-resisting-frame’s overturning moment) 【作者】 常磊,崔济东,廖耘,周定,李盛勇 【单位】 广州容柏生建筑结构设计事务所 【摘要】 基于框架倾覆力矩的统一解法,结合工程实践给出3种框剪梁的定义,分别对典型框架-剪力墙结构和框筒结构进行框剪梁可视化识别,并按统一解法计算其框架倾覆力矩占比,与抗规法及目前常用的轴力法进行对比分析。结果表明:统一解法是合理可行的框架倾覆力矩计算方法;只计入剪力墙与框架柱(或斜撑)的框剪梁定义2会显著低估框架倾覆力矩,定义1与定义2结果差异不大,建议采用定义1。同时对框支剪力墙结构框支框架的倾覆力矩进行了举例计算和分析,也验证了统一解法的合理可行。 【关键词】 倾覆力矩; 框架-剪力墙结构; 框筒结构; 框支剪力墙结构; 【期刊栏目】 建筑结构 Building …

[结构设计][盈建科] 重力二阶效应(P-Delta效应)对结构的影响(实际算例对比)

坚持实干、积累、思考,创新。 实际模型,算例为某7度区超高层(500m),进行考虑与不考虑P-DELTA效应的结构计算对比,简要对比结果如下。 周期 [Period] 从周期结果看,考虑P-DETA后,结构刚度变弱,周期变长。这个可直接理解。 地震剪力(剪重比调整前) [Seismic Shear Force before adjustment] 如下图,考虑P-DATA前后,地震剪力差异没有太大。造成这种现象的主要原因是因为,结构基本周期大于6s,而6s后规范反应谱按拉平的方式处理,因此地震力影响不大。实际考虑P-DELTA效应后,结构周期变长,一般情况,地震力会减小。 地震剪力(剪重比调整后) [Seismic Shear Force after adjustment] 如下图,考虑P-DATA前后,地震剪力差异没有太大。原因已在前面表述。 地震位移角 [Story drift under seismic load] 对于该结构,由于考虑P-DELTA前后地震力变化不大,而考虑P-DELTA后,刚度减弱,因此,在相同的地震力作用下,考虑P-DETA效应的地震位移角更大。 风荷载 [Wind Load] 如下图,考虑P-DATA前后,风剪力相差不大。 …

[结构设计][盈建科] YJK中P-Delta效应是否对周期有影响?

实干、实践、积累、思考、持创新。 答案是肯定的,当然有影响,帮助文档也又说,P-Delta影响周期,同时影响后续的整体指标及各类工况的位移、内力、配筋等计算结果。 以下是一个小算例测试。模型1不考虑重力二阶效应,模型2 考虑 D+0.5L的重力的二阶效应影响,模型3为了对比,设置为考虑10D+5L的重力二阶效应影响。 微信公众号 ( Wechat Subscription) 欢迎关注 “结构之旅” 微信公众号  

[结构][编程][规范] Design Load Combinations: 设计荷载组合计算工具

坚持实干、坚持一线、坚持积累、坚持思考,坚持创新。 2090623 写的题目,接下来必须更新。       微信公众号 ( Wechat Subscription) 欢迎关注 “结构之旅” 微信公众号

[结构设计][超限][工具] “高规”结构抗震性能目标查询工具

实干、实践、积累、思考、创新。 程序图标 ( Program Icon ) 程序介绍 ( Program Introduction) 20180117写的题目,现在填坑。写个小软件,放松一下。按高规的性能设计章节查询不同性能水准的构件性能目标。 程序界面 ( Program Interface ) 微信公众号 ( Wechat Subscription) 欢迎关注 “结构之旅” 微信公众号

[设计][基坑] 2D桩锚支护基坑施工阶段模拟

实干、实践、积累、思考,创新。 实操一个 Midas 案例,案例来源于midas。 by 沈雪龙(XueLong SHEN) 工程概况 几何建模 定义材料 定义属性 划分网格 边界条件 荷载条件 定义施工阶段 运行分析 水平变形结果(最后开挖步) 坑边沉降(最后开挖步) 内撑轴力(最后开挖步) 围护桩弯矩(最后开挖步) 锚杆轴力(最后开挖步) 施工模拟动画 微信公众号 ( Wechat Subscription) 欢迎关注 “结构之旅” 微信公众号