为何结构越长温度效应越显著??

坚持实干、坚持实践、坚持积累、坚持思考,坚持创新。 我们经常会看到超大面积结构,超长结构常需要做温度效应分析。为何是长的结构而不是短的结构越温度效应越显著?? 很简单,由下面的公式可知: ε = α ΔΤ ε = α ΔΤ = ΔL/L ΔL = α ΔΤ L 以上公式说明,对于无约束的结构,在温度变化作用下,结构的伸长量或者缩短量ΔL与热膨胀系数α 、温度变化ΔΤ、及结构本身的长度 L有关,与这三个量成正比。 因此,对于无约束的结构,结构越长,或者体积越大,在相同的温度变化下,结构伸长或者缩短的量越大,且这一温度变化引起的伸长或缩短在结构中不产生应力。 反过来,对于存在约束的结构,在约束条件一致的情况下,若结构越长,发生同样的温度变化下,结构倾向于伸长或缩短的量越大,进而这个伸长或缩短受约束限制后导致的结构应力和应变也越大。 即,出现了我们常说的结构越长温度效应越显著的说法。 PS. 上述以线膨胀为例子说明,其实温度作用下,结构会沿着3个方向都发生伸缩,即发生体积变化。 微信公众号 ( Wechat Subscription) 欢迎关注 “结构之旅” 微信公众号,及时订阅更新  

为何长的橡皮筋比短的橡皮筋更容易拉伸?

坚持实干、坚持实践、坚持积累、坚持思考,坚持创新。 应力-应变关系(小变形下,胡克定律) σ = E ε 力与伸长量的关系 F = σA = AE ε = AE Δd/L 则伸长量 Δd = FL/EA 因此,同样的力作用下,橡皮筋越长,即L越大,则伸长量Δd 越大 微信公众号 ( Wechat Subscription) 欢迎关注 “结构之旅” 微信公众号,及时订阅更新  

[PERFORM-3D][Tool] 组合钢管混凝土CFST柱纤维截面工具 [Combined CFST Column Inelastic Fiber Section]

实干、实践、积累、思考、创新。 应网友的要求,增加一个组合矩形钢管混凝土柱截面纤维划分的小工具,分享给大家。 程序图标 ( Program Icon ) 程序介绍 ( Program Introduction) 针对PERFORM-3D软件的组合钢管混凝土柱截面纤维剖分小工具。程序通过导入文本参数(.csv),直接生成纤维截面的参数,并导出PERFORM-3D需要的二进制文件(.PF3CMP)。然后通过PERFORM-3D导入.PF3CMP文件完成繁琐的纤维截面输入工作,节省你的时间。 This program is used for the data input of the “Inelastic Fiber Column Section” in PERFORM-3D. Through the import of section properties in …

[软件][Tool][设计] YJK_ModePost: 盈建科模态数据分析工具

实干、实践、积累、思考、创新。 程序图标 ( Program Icon ) 程序介绍 ( Program Introduction) YJK_ModePost: 盈建科模态数据分析工具。基于YJK的分析结果,可以校核CQC振型分解法的计算,查看各个振型的地震力,剪力,扭矩倾覆弯矩,可以选择指定的振型进行振型组合,查看振型组合对各类响应的影响。 程序界面 ( Program Interface ) 相关软件 ( Related Program ) [01] ENGT: Engineering Toolkit [建筑结构辅助设计工具集成系统] [02] [风洞试验][结构设计][软件] RWDI风洞试验荷载数据处理工具 [03] [结构设计][软件][Program] YJK风洞荷载试验数据处理工具[ A Program …

[地震计算][反应谱][动力学][CQC] 振型叠加法随着组合振型数量的增加各种响应量是怎么变化的?

实干、实践、积累、思考、创新。 以YJK模型的振型分析结果,分析采用CQC法进行振型组合的情况下,随着CQC组合振型数量的增加,结构基底响应的变化规律。 结果如下图所示。 X向地震作用下 X向基底剪力 X向地震作用下 Y向基底剪力 X向地震作用下 绕Z轴的扭矩 X向地震作用下 X向倾覆弯矩 X向地震作用下Y向倾覆弯矩 X向地震作用下,随着CQC组合的振型数量的增加,X向基底剪力不断增大,倾覆弯矩也一样的规律,但是 Y向的基底剪力及倾覆弯矩规律则不然,随着组合模态数量的增加,Y向剪力是先减小,然后逐步稳定略带波动。 相关话题 ( Related Topics) [01]. [Tool] SPECTR – A program for Response Spectra Analysis [反应谱计算程序] [02]. [程序][Tool] Ground Motion …

[ETABS] ETABS警告”THE STRUCTURE IS UNSTABLE OR ILL-CONDITIONED!!”

坚持实干、坚持一线、坚持积累、坚持思考,坚持创新。 提示报错。出现这种错误的可能软件提示以下几种可能: – INADEQUATE SUPPORT CONDITIONS, OR 支座约束条件不足 – ONE OR MORE INTERNAL MECHANISMS, OR 存在机构 – ZERO OR NEGATIVE STIFFNESS PROPERTIES, OR 刚度为0或者负刚度 – EXTREMELY LARGE STIFFNESS PROPERTIES, OR …

[结构设计][动力学] YJK中CQC振型组合地震力的复核

坚持实干、实践、积累、思考、创新。 通过盈建科WZQ.OUT提供的单振型地震力,验算CQC组合地震力。据此编制程序YJK_ModePost([软件][Tool][设计] YJK_ModePost: 盈建科模态数据分析工具 ),用于振型数据分析。 验算结果如下。 相关话题 ( Related Topics) [01]. [Tool] SPECTR – A program for Response Spectra Analysis [反应谱计算程序] [02]. [程序][Tool] Ground Motion Selection [强震记录选取] [03]. [程序][软件]Ground Motion Library [强震记录管理] [04]. Artificial ground …

[YJK][动力学] 逐步加大结构宽度结构周期的变化算例测算

实干、实践、积累、思考、创新。 测算10组模型,模型1为2*3网格的5层框架结构,第一周期为X向平动,第二周期为Y向平动,第三周期为扭转。 模型2~模型10,由模型1沿X向不断拉长形成,层数不变。 看看往两端加宽结构的各周期如何变化。 采用YJK MultiModel Compare提取各模型的结果。 绘制各模型的周期变化曲线。 第一周期 X向平动 第二周期 Y向平动 第三周期 扭转 可见,往X向不断加宽,第一周期不断减小,第二周期不断增加,扭转周期不断增加。 为什么会这样?其实 周期的增加或者减小其实与质量、刚度增加的相对比例有关。 这里给出了基本理论解释:[动力学][Structure Dynamics] 线性增加刚度K与质量M下单自由度(SDOF)结构的周期变化 微信公众号 ( Wechat Subscription) 欢迎关注 “结构之旅” 微信公众号

[动力学][Structure Dynamics] 线性增加刚度K与质量M下单自由度(SDOF)结构的周期变化

坚持实干、坚持一线、坚持积累、坚持思考,坚持创新。 单自由度体系,线性增加刚度K与质量M,结构周期的变化规律。 现性递增k与m 单自由度结构的周期变化关系:周期可增可减,与k、m各自增幅有关、即 k/m有关。增、减构件类似在原有基础上递增k、m,如果原先K、M的基数已经很大,曲线已经在平滑段,简单线性增减对周期结果影响小。 微信公众号 ( Wechat Subscription) 欢迎关注 “结构之旅” 微信公众号

[ETABS][组合截面] ETABS中通过截面设计器定义的组合截面 (ETABS v9 and ETABS 201x) (ETABS Section Designer)

实干、实践、积累、思考、创新。 测算ETABS中的截面设计器(Section Designer),钢管混凝土截面。 ETABS V9 及 ETABS 2016的测算结果如下: 可以发现,除了J之外,其他参数均一致。 此外,Section Designer中给出的截面参数均是基于Base材料的刚度,基于刚度等效的方法反算出来的。 由于是基于刚度等效计算,那对于组合截面,基于这些参数进行重力及质量计算必然不等效,就需要质量及重量修正系数。而这个修正系数在ETABS中是内部计算的,尽管在ETABS V9及 ETABS v2016中的处理略有不同。在ETABS 2016中不需要再重复指定了。 微信公众号 ( Wechat Subscription) 欢迎关注 “结构之旅” 微信公众号

[ETABS] ETABS2016剪力墙网格划分尺寸 (Auto Rectangular Mesh Setting for Walls)

坚持实干、坚持一线、坚持积累、坚持思考,坚持创新。 ETABS 2016 剪力墙网格剖分设置路径 Assign-> Shell Assignment-> Wall Auto Mesh Options 其中设置Auto Rectangular Mesh后,可以在高级选项中设置网格剖分的最大尺寸 Approximate Maximum Mesh Size 注意,这个网格尺寸是针对所有设置了Auto Rectangular Mesh属性的剪力墙。 微信公众号 ( Wechat Subscription) 欢迎关注 “结构之旅” 微信公众号

[软件][开发][超限设计] 自动生成结构分析EXCEL图表

实干、实践、积累、思考、创新。 做一些超限项目,整理图表用。貌似很多人在show这种东西。我也随便搞搞,show一下。 后面还有很多东西要放出来。再等等。 微信公众号 ( Wechat Subscription) 欢迎关注 “结构之旅” 微信公众号

[结构][FEM][Midas Gen] 结构的弯曲变形和剪切变形分量——简单算例 (Bending induced and Shear induced Lateral Deformation of Structure)

实干、实践、积累、思考、创新。 几个简单算例,测算的侧移,其中有多少是弯曲变形引起,多少是剪切变形引起。 接下来有空再找几个实际工程算例测算,看看方法是否合理。 微信公众号 ( Wechat Subscription) 欢迎关注 “结构之旅” 微信公众号

[反应谱][动力学][抗震] 不同阻尼比反应谱曲线的相交现象 (The Curve Intersection Phenomenon of Response Spectra with Different Damping Ratios)

实干、实践、积累、思考、创新。 采用 SPECTR反应谱分析软件 (下载链接: http://www.jdcui.com/?p=1875 ) 对几个地震波进行位移谱的求解,结果如图1~图5所示,可以发现,随着阻尼比的增大,大部分地震波在各周期范围内反应谱值减小。但是部分地震波在某些周期范围内,阻尼比增大,但是位移谱值不一定减小。 在图形上表现为不同阻尼比的反应谱曲线在某些周期范围内出现相交的现象(见图1及图3)。同样,拟加速度反应谱也存在这个现象,因为拟加速度反应谱是由位移谱转换过来的。 初看这个现象感觉很奇怪,其实仔细想也十分正常。 以图1的反应谱为例,在周期2.5s左右出现明显的相交现象。把2.5s周期各阻尼比单自由度结构的位移时程绘制出来,见图6. 由图6可见,各阻尼比下,位移时程曲线的整体趋势比较一致,该凸的地方大家一起凸起来,该凹的地方一起凹下去,即趋势是一致,但是随着阻尼比的增大,出现绝对值最大值的时间不同了。 如图,阻尼比为20%的位移最大值出现在30s左右,其他阻尼比下位移绝对值最大值出现在40s左右。且阻尼比增大到20%后绝对值比其他阻尼比在40s左右出现的绝对值大。因此不同阻尼比的反应谱曲线就出现了交点。 因此,不同阻尼比的反应谱曲线可能出现交点。因为,反应谱纵坐标是绝对值。阻尼比发生改变,可能整个响应时程的整体趋势没改变,但是最大值出现的位置会不同,大小的增大或减小规律也不同,而反应谱记录的是绝对值。 所以,千万别闭着眼睛说,阻尼比越大,位移越小。瞎说!!! 😎 😀  图 1 图 2 图3 图 4 图 5 图 6 微信公众号 ( Wechat Subscription) 欢迎关注 “结构之旅” 微信公众号

[试验][研究] My Programs for Civil Engineering Tests/Experiments [自编的土木工程试验程序汇总]

将自编的与试验数据分析及处理相关的程序汇总于此,有需要的小伙伴可以看看。 另外,也可以从网站的这个下拉菜单去查看。 以下也顺带列一下。 1.【HLA: Hysteretic Loop Analysis Program】【滞回曲线分析程序】 介绍:主要是针对做构件试验的研究生及科研人员做的,软件可以对对称的滞回曲线,不对称的滞回曲线进行分析,获得各圈滞回曲线的割线刚度、等效黏滞阻尼系数、耗能系数,等常用的做构件滞回性能评估的参数。程序非常方便做构件试验的同学使用,只要将试验的滞回曲线导入程序进行分析,可输出常用的分析参数,可直接输出 EXCEL图表,用户导入数据,进行分析后可选择输出EXCEL图表,就是我们连EXCEL图都懒得做了,输出EXCEL后可以对格式稍微做些调整,即可直接用于论文;另外还可以可将各圈滞回环曲线输出到文本,更加方便使用者进行数据分析。 HLA v2016:[科研][Tool][软件][试验] HLA: Hysteretic Loop Analysis Program [HLA: 滞回环分析工具] HLA v2019: [软件][科研][更新][试验] 2019版 HLA: Hysteretic Loop Analysis Program [2019版 HLA: …

[选波][地震波][科研] 隔震结构波选波案例3(GMS选波系统-选波应用案例22)

实干、实践、积累、思考、创新。 用GMS选波系统( http://www.jdcui.com/?page_id=6118 )做的一个隔震结构选波案例。 选波基本信息: 设防烈度 8度0.2g 加速度峰值cm/s2 600 地震影响系数最大值 1.35 特征周期Tg/s 0.55 第一周期 第二周期 第三周期 隔震前 1.435 1.43 1.316 隔震(中震) 3.152 3.147 2.914 隔震(大震) 3.548 3.542 3.332 隔震(极大震) 3.625 3.619 …

[混凝土][Concrete][笔记] 钢筋混凝土局部承压 (Local Compression of Reinforced Concrete)

实干、实践、积累、思考、创新。 (1)局部承压时,在局部承压面上产生较大的纵向压应力,随着离开局部受压面,压应力逐渐扩散到整个截面上,趋于均匀,扩散距离约为构件的截面高度h。 (2)在靠近局部受压面附近,还存在横向拉应力,使混凝土局部承压时发生纵向裂缝,进而发生劈裂破坏。随着李凯凯局部受压面的距离不断加大,横向拉应力变为压应力最后横向应力趋于零。 (3)局部受压的破坏形态与构件截面面积Ac及局部受压面积Al的比值有关。Ac/Al较小时,横向拉应力使得构件出现纵向裂缝,以劈裂破坏为主。 (4)混凝土局部承压的抗压强度高于全截面受压时候的轴心抗压强度,提高程度随Ac/Al的增大而增大,因为Ac/Al越大,相当于局部受压区受到受压区外的混凝土的约束越大,使得局部受压区处于“三向受压”状态上,这一强度的提高在公式上体现为局部承压的承载力计算公式多了个βl提高系数。βl=(Ab/Al)0.5,Ab为局部承压时的计算面积。 (5)防止局部承压的主要方法: a. 设置刚度较大的垫板,扩大局部受压面积; b. 提高混凝土强度; c. 配置间接钢筋。 (6)间接钢筋的作用是什么?前面提到了在靠近局部受压面附近,混凝土有横向拉应力,配置间接钢筋就是承担这些拉应力,限制裂缝开展,同时也相当于增强混凝土的“套箍”约束作用。 (7)配置间接钢筋的局部受压承载力计算公式上,间接钢筋的作用通过将间接钢筋折算为竖向钢筋的方式来计算。 微信公众号 ( Wechat Subscription) 欢迎关注 “结构之旅” 微信公众号

[混凝土][Concrete][笔记] 混凝土构件受力钢筋的最小配筋率 ( Minimum-reinforcement Percentage in Concrete)

坚持实干、坚持一线、坚持积累、坚持思考,坚持创新。 混凝土为非延性材料,钢筋有很好的延性,控制混凝土构件的配筋率最主要的一个目的是提高混凝土构件的延性,改善构件的受力形态 受力性能。配筋过少与素混凝土结构类似。 对于普通混凝土构件,混凝土规范 分受拉及受压给出了最小配筋率的规定。 受拉: 对于受拉构件,理论上,可以通过截面开裂后构件达到屈服这一临界状态获得构件受拉钢筋的最小配筋率。 混凝土规范给出的是受拉纵向钢筋的最小配筋率限值为0.2%及45ft/fy%取大值。 意义:控制混凝土的受拉最小配筋率的目的是保证截面开裂后,构件不立即失效,裂而不断即一个最低标准。 受压: 对于受压,规范给出了“一侧纵向受压钢筋”最小配筋率为0.2%,“全部纵向钢筋”最小配筋率为0.6%。 意义:控制混凝土的受压最小配筋率的目的是希望受压混凝土破坏时,不至于具有突然压溃脆性破坏。配置受压钢筋有助于延缓压溃这个破坏过程,提高延性。 另外,控制受压混凝土构件的最小配筋率的另外一个原因是,混凝土受压会有徐变,长期荷载作用下,压力会逐渐由混凝土转移到钢筋。受压配筋过少将使得受压钢筋接近于屈服,影响承载力。 预应力混凝土构件 对于预应力混凝土受弯构件中的手拉钢筋,规范则直接通过控制构件的开裂弯矩不大于按实配钢筋计算的正截面弯矩设计值来控制, 即控制 Mu>=Mcr来保证,而不是直接给出配筋率的方式。 主要原因是,预应力构件的抗弯承载力不仅仅取决于钢筋及混凝土的强度,还和张拉控制力,预应力损伤,预应力施加方法等多种因素相关。必须通过计算来确定。 微信公众号 ( Wechat Subscription) 欢迎关注 “结构之旅” 微信公众号