[论文][Paper] 深圳某400m双塔连体结构TLD风振控制可行性研究 (Feasibility investigation of wind-induced vibration control using TLD for a 400-meter twin-tower connected structure in Shenzhen)
The structural system of a 400m twin-tower linked project in Shenzhen features a frame-core tube configuration with outriggers and belt truss strengthening story, comprising eastern and western towers connected by connective structure. Due to complex architectural geometry, high wind loads, and unique site-specific wind conditions, under 10-year return period wind loads from the southeastern direction, the towers exhibit significant dynamic responses. Wind-induced accelerations at the tower tops substantially exceed code limits, resulting in occupant comfort deficiencies. To address this, tuned liquid dampers (TLDs) were proposed for wind vibration control. Spectrum analysis was employed to identify governing vibration modes of structural wind-induced responses. Time-history analysis was conducted to evaluate wind-induced dynamic responses of the TLDs-equipped structure, with parametric sensitivity analysis subsequently optimizing TLD design parameters. The results demonstrate that the structural base shear and the wind-induced acceleration spectrum at the eastern tower top exhibit a single-peak characteristic, primarily governed by the first translational mode of the eastern tower. The wind-induced acceleration spectrum at the top of the western tower shows a double-peak characteristic, influenced concurrently by the first translational modes of both the eastern and western towers. TLDs installed atop the eastern tower significantly reduce base shear and wind-induced accelerations at both tower tops. However, TLDs at the top of the western tower only effectively mitigate accelerations perpendicular to the connective structure but show no significant control effect on accelerations along the connective structure direction, the accelerations at the top of the eastern tower, or the structural base shear. Furthermore, when TLDs are installed simultaneously at the tops of both towers, wind-induced accelerations are effectively controlled, ensuring compliance with code-specified limits.
