[书]PERFORM-3D原理与实例 – 第3章 – 钢筋与混凝土材料的单轴本构关系

材料非线性问题是建筑结构非线性分析中经常涉及到的问题,计算中采用的材料本构模型是否合理,直接影响弹塑性分析结果的精度,进而影响建筑结构的抗震性能评估结果。本章首先对几种典型的钢筋与混凝土材料的单轴本构进行介绍,在此基础上对PERFORM-3D [1,2]中单轴本构的处理进行介绍,并结合PERFORM-3D的规则给出常用钢筋与混凝土材料的单轴本构定义方法。Material nonlinearity problems are very common in nonlinear structural analysis. Whether the nonlinear material model used in numerical calculation is reasonable directly influence the reliability of elastoplastic analysis results, which will further affect the seismic performance evaluation of structures. In this chapter, several typical uniaxial constitutive models of steel and concrete was first introduced. On this basis, uniaxial steel and concrete constitutive models in PERFORM-3D were explained in detail. The contents cover detailed explanation of the ‘YULRX’ backbone and the Hysteresis loops in PERFORM-3D. After that, uniaxial constitutive model properties for several commonly used steel and concrete materials were defined based on the rules of PERFORM-3D.