[钢结构][稳定][FEM] 箱型截面压杆的弹性曲屈系数 (Buckling Coefficient of Box-section Column under Axial Compression)

坚持实干、坚持一线、坚持积累、坚持思考,坚持创新。 随后更新…                   微信公众号 ( Wechat Subscription) 欢迎关注 “结构之旅” 微信公众号

[FEM][SteelStructures] 有侧移与无侧移框架的屈曲模态 (Buckling Modes of Frames with and without Sidesway)

坚持实干、坚持一线、坚持积累、坚持思考,坚持创新。 有侧移及无侧移框架的屈曲模态差别,有侧移框架失稳为反对称失稳,构件为双曲率屈曲,无侧移框架失稳为对称失稳,构件为单曲率屈曲。。。 有侧移框架及无侧移框架是钢结构中常用的概念,有侧移及无侧移框架构件的计算长度取值不同。 有侧移框架柱,计算长度系数大于1.0,而无侧移框架柱计算长度系数在0.5~1.0之间,为啥  ,仔细想想,另外从屈曲模态也可以看出来。 微信公众号 ( Wechat Subscription) 欢迎关注 “结构之旅” 微信公众号

[钢结构][笔记]焊接工字钢梁翼缘及腹板焊缝的应力状态 (The Stress State of Web to Flange Welds in Welded I-Secition Girders)

坚持实干、坚持一线、坚持积累、坚持思考,坚持创新。 焊接工字钢梁翼缘及腹板焊缝的应力状态: (1)弯矩作用下引起的沿着梁纵向的水平剪切应力 (2)如果存在集中竖向荷载,还包括集中竖向荷载引起的局部压应力。 微信公众号 ( Wechat Subscription) 欢迎关注 “结构之旅” 微信公众号

[钢结构][笔记] 钢梁的局部稳定与腹板加劲肋 (Local Stability of Steel Beam and Web Stiffeners)

坚持实干、坚持一线、坚持积累、坚持思考,坚持创新。 (1)对于轧制型钢梁,由于翼缘及腹板的厚度相对较大,一般没有局部稳定问题。焊接板梁则通常需要验算板件的局部稳定。 (2)工字钢翼缘的局部稳定通常通过宽厚比来保证,宽厚比的限值的取值一般根据以下两种方法来确定:a.(等稳定条件)板件的屈曲不早于构件的整体屈曲 b.板件的屈曲临界应力等于材料的屈服应力。 (3)腹板的局部稳定可通过高厚比来保证,当高厚比无法满足要求时或梁顶存在加大局部荷载时,通过设置加劲肋来保证梁的局部稳定性。从这个角度来说,腹板加劲肋是与梁腹板的曲屈相关的,这是腹板加劲肋的第1次出现,此处设置腹板加劲肋是防止腹板的屈曲。 (4)钢梁腹板加劲肋包括:横向加劲肋、纵向加劲肋、短加劲肋、支撑加劲肋。各类加劲肋的设置均有不同的功能及侧重点。横向加劲肋主要用于提高腹板的抗剪曲屈能力,纵向加劲肋主要用于提高腹板的抗弯曲屈能力,短加劲肋则主要用于防止腹板的局压曲屈。支撑加劲肋当然是用于处理存在较大集中荷载的位置,防止腹板出现类似柱的受压曲屈,如支座位置或者存在较大集中荷载的其他位置。 (5)规范中曲屈后强度利用指的是钢梁腹板的曲屈后强度的利用,不是别的其他位置的曲屈后强度利用。那么为何是考虑腹板的曲屈后强度,而不说考虑翼缘板的曲屈后强度利用?又为何钢梁存在考虑腹板屈曲后强度这一说,为何压杆件屈曲没有曲屈后强度利用一说?简单说是因为,四边支承的薄板的屈曲与普通压杆的屈曲特性不同,普通压杆屈曲就破坏了,屈曲荷载通常就是破坏荷载及峰值荷载,而四边支承的薄板屈曲出现了所谓的张力场,屈曲后依然可以继续承载,不至于立刻破坏,除非四边的支承破坏。 (6)考虑腹板曲屈后强度,钢梁的抗剪承载力可以提高,而抗弯承载力呢?而梁的抗弯承载力会有所减少(PS. 为何是这样,可以思考一下)。腹板曲屈后依然可以继续承受更大的荷载,因此,允许腹板屈曲可一定程度充分利用材料。我国钢结构设计规范规定,承受静力荷载和间接承受动力荷载的组合梁,宜考虑屈曲后强度进行设计,以节省材料。比如,让梁的翼缘尽量厚一点,充分提高抗弯能力,同时腹板尽量设计得薄一点(高厚比大一点),屈曲也没关系。 (7)对于考虑腹板曲屈后强度进行设计的钢梁,需对梁的各控制截面进行同时考虑抗弯、抗剪的基于屈服面的承载力设计(具体公式可看规范,比较复杂)。当无法满足的时候,需要设置腹板加劲肋,以提高腹板的曲屈后强度。这理腹板加劲肋是第2次出现,这里加劲肋与前面高厚比不满足时候设置加劲肋的概念不太相同。前者设置加劲肋是为了不让钢梁腹板曲屈,后者设置加劲肋是为了提高梁腹板曲屈后的强度,充分发挥腹板屈曲后的材料利用。 (8)对于考虑腹板曲屈后强度设计的梁,在腹板高厚比一定的情况下,设置横向加劲肋和减小横向加劲肋的间距,均可提高腹板的曲屈后抗剪承载能力。横向加劲肋对提高腹板的屈服后抗弯承载力没作用。 。。。 微信公众号 ( Wechat Subscription) 欢迎关注 “结构之旅” 微信公众号

[钢结构][笔记][Steel Structures] 檩条的受力特点 (The Characteristics of Purlins)

坚持实干、坚持一线、坚持积累、坚持思考,坚持创新。 檩条的主要作用 (1)支撑于屋架上,传递屋面荷载到屋架上。 (2)部分檩条兼做屋架侧向支撑作用。 檩条的受力特点: (1)当仅传递屋面荷载时,檩条主要是双向受弯构件 (2)当檩条兼做屋架侧向支撑时,檩条则是压弯构件。但是需要注意的是,让檩条做侧向支撑,必须加斜杆等构件构成平面几何不变体系。 檩条的计算: (1)檩条的荷载包括 屋面重量,檩条自重,雪荷载,施工检修荷载,风荷载,积灰荷载。 (2)檩条截面在屋面坡向刚度较弱,当檩条跨度较大时,尝设置檩条侧向支撑,如拉条等。 (3)通常需要验算 抗弯强度,整体稳定,挠度。实际上建模计算时候,都采用程序计算,抗弯,抗剪,整体稳定,挠度,长细比,抗扭都会算。 其他: 檩条布置间距,主要考虑屋面材料性能及尺寸规格。同时,檩条尽可能布置在屋架上弦杆节点处,使得上弦杆主要受轴向力。 兼做侧向支撑的檩条应该布置在屋架节点处。 微信公众号 ( Wechat Subscription) 欢迎关注 “结构之旅” 微信公众号

[钢结构][软件] 格构柱缀条布置方案力学概念测算对比 (Lace Bar Arrangement Patterns in Steel Lattice Column)

坚持实干、坚持一线、坚持积累、坚持思考,坚持创新。 缀板格构柱通常看成刚架分析,柱分肢看成压弯构件。 缀条格构柱通常按桁架分析,柱分肢只受轴心压力。 以下是6种缀条布置方案及其受力分析。 方案1:不带横缀条的单斜缀条体系。 方案2:带横缀条的单斜缀条体系。 方案3:不带横缀条的双斜缀条体系。 方案4:带横缀条的双斜缀条体系。 方案5:带横缀条,斜缀条朝一个方向倾斜(斜缀条不连续)。 方案6:带横缀条,斜缀以柱中为分界,上下斜缀条方向不同(斜缀条仅在中点不连续)。 从分析结果可见: (1)缀条用truss模拟,即便竖向力在顶部均匀施加到两柱分肢,柱分肢也不可能仅受轴力,同样会受弯矩及剪力。 (2)方案1级方案2相对最简便 (3)方案3是方案1的加强。 (4)方案4是方案3基础上加上横缀条,由于横缀条的影响,在受到竖向力的情况下,柱身压缩,横缀条约束斜缀条的变形,斜缀条产生的额外轴力最大。 (5)方案5在竖向向力下产生的斜向位移最大,不利。 (6)由于方案5、方案6斜缀条是不连续的,由节点受力平衡,在剪力作用下,横缀条必然受力,承担抗剪。 缀条布置 轴力 剪力 弯矩 变形 微信公众号 ( Wechat Subscription) 欢迎关注 “结构之旅” 微信公众号

[钢结构][Steel Structures][规范] 钢结构规范不同截面宽厚比、高厚比计算公式的差异

坚持实干、坚持一线、坚持积累、坚持思考,坚持创新。 下图构件宽厚比摘自《钢结构设计标准》 GB 50017-2017. 由图可见,部分截面的宽厚比与长细比有关,部分截面的宽厚比与长细比无关。 其中主要原因是,规范的构件宽厚比限值其实是基于两种情况做出来的。 方法1:基于等稳定条件,及板件的曲屈不先于构件的整体曲屈。 方法2:控制板件的曲屈临界应力等于钢材的屈服点。 对于方法2建立的宽厚比则与长细比无关。对于方法1建立的宽厚比,则与长细比有关。 由于方法1是基于等稳定条件,需要联合整体曲屈控制条件,整体曲屈条件与整体稳定系数有关,而整体稳定系数通常是长细比的函数,因此方法1的宽厚比与长细比有关。 微信公众号 ( Wechat Subscription) 欢迎关注 “结构之旅” 微信公众号

[钢结构][设计] 什么是钢结构中的耳板?!

坚持实干、坚持实践、坚持积累、坚持思考,坚持创新。 常说的耳板是用于吊装构件用的,耳板焊接在上、下柱端部,施工过程通过连接板连接上下柱两端的耳板,通过螺栓固定,达到临时固定和调直的作用。 固定后,进行焊接等操作。施工完毕后,可以拆除耳板及连接板。 如下图所示。 微信公众号 ( Wechat Subscription) 欢迎关注 “结构之旅” 微信公众号

[钢结构][设计] 钢结构中的焊接引弧板、引出板、衬板

坚持实干、坚持实践、坚持积累、坚持思考,坚持创新。 引弧板:装配在焊接坡口的前端,进行电弧的引弧,防止起始电流太大形成焊接缺陷,也保证焊接成型。 引出板,也叫收弧板:装配在焊接坡口的后端,进行电弧的收弧,避免收弧缺陷,也保证焊接成型。 衬板:装配在焊接坡口的背面,辅助单面焊的成型。水平放的时候又叫垫板,简单说就是用来在焊缝的背面堵住焊缝,然后再前面施焊,不然就焊液就漏出去了。 微信公众号 ( Wechat Subscription) 欢迎关注 “结构之旅” 微信公众号

[PERFORM-3D] PERFORM-3D中阻尼怎么取值?

实干、实践、积累、思考、创新 读者在看《PERFORM-3D原理与实例》(http://www.jdcui.com/?page_id=3757)一书时问我这个问题,今天抽时间整理了一下,如果我回答有问题,欢迎大家批评指正。 读者问题:“PERFORM-3D中阻尼参数怎么取?常用的结构体系如钢筋混凝土结构、钢结构、型钢混凝土结构的阻尼比怎么取值?“ 答: (1)p3d中,建议用模态阻尼+瑞丽阻尼的组合方式进行动力分析,你刚才界面显示的是瑞丽阻尼。为何这样处理?因为我们小震分析用的是反应谱法,各振形指定阻尼,这个阻尼组装成矩阵对应的阻尼就是模态阻尼。而p3d中,也提供了这个选项,但完整的模态阻尼阶次是与动力自由度数量一致的,除非把所有模态求出来,才能组合成完整的模态阻尼,而实际弹塑性动力分析的时候不可能求太多阶模态,因为计算效率问题,所以就取前面主要的模态数量,而放弃后面的模态,比如p3d模态分析的最多好像只允许60阶,那舍弃掉的就是部分高频阻尼,因此,开发者建议,这里仅是象征性增加一点瑞丽阻尼,如上图的0.1%,同时有利于收敛性,有利于收敛性。具体取值对总体结果影响不大。 (2)三种结构阻尼比怎么取,按整个结构取一个统一阻尼比其实是最早的提法,整体结构笼统一般仅适用于纯质材料,如常规混凝土结构取0.05,纯钢结构0.03,可能都没太多异议。但到了混合结构怎么取,就头疼了,因为分不清材料多少。其实目前大部分弹性分析软件,包括YJK,midas Gen 都提供了基于材料应变能的阻尼比计算方法,你直接指定材料的阻尼比,软件会基于材料应变能算出各阶振型的阻尼比。对于混合结构,你会得到各阶振型下的阻尼比,然后各阶振型按不同的阻尼比直接进行反应谱计算。 (3)因此回到实际情况,倘若你p3d做的是混合结构,建议你在yjk中用材料应变能进行分析,得到前面主要各阶模态的阻尼比,然后再取一个合理值,在p3d中通过模态阻尼比进行指定。因为貌似p3d不能按振形分别指定阻尼比,只能所有模态统一指定一个阻尼比。 微信公众号 ( Wechat Subscription) 欢迎关注 “结构之旅” 微信公众号

[软件][组合结构] 栓钉抗剪连接件抗剪承载力计算 (Shear Bearing of Pin Bolted Members)

坚持实干、坚持实践、坚持积累、坚持思考,坚持创新。 程序图标 ( Program Icon ): 程序介绍 ( Program Introduction) 计算栓钉抗剪承载能力。 程序界面 ( Program Interface ) 微信公众号 ( Wechat Subscription) 欢迎关注 “结构之旅” 微信公众号

[结构设计][ENGT][超高层] 钢构件应力比分析及优化(ENGT超高层应用案例8)

坚持实干、坚持实践、坚持积累、坚持思考,坚持创新。 To be continued…           注释 ( Comments )   ( 如果您发现有错误,欢迎批评指正。邮箱:jidong_cui@163.com . 如果您喜欢这篇博文,请在上面给我 点个赞 吧!         ( If you found any mistakes in the post, please let me know. Email : jidong_cui@163.com. If you like …

[FEM][Midas][Abaqus][Midas2Abaqus] 钢柱屈曲分析 (Buckling Analysis of Steel Column)

坚持实干、坚持一线、坚持积累、坚持思考,坚持创新。 底部固支的H型钢悬臂柱,顶部竖直向下作用轴压力,分析构件的屈曲模态。为了考虑翼缘或腹板的局部屈曲,可采用壳单元进行建模。本例分别采用Midas Gen及Abaqus软件进行模拟。 Midas Gen Model Midas Gen Results (a)一阶屈曲模态(屈曲因子:8.24E+005)(绕工字钢的弱轴) (b)二阶屈曲模态(屈曲因子:1.976E+006)(绕工字钢的强轴) (c)三阶屈曲模态(屈曲因子:1.976E+006)(绕工字钢轴向扭转) Midas2Abaqus Model 为了进行Abaqus分析,采用Midas2Abaqus软件进行模型转换。 Abaqus Model Abaqus Results (a)一阶屈曲模态(屈曲因子:8.26583E+005)(绕工字钢的弱轴) (b)二阶屈曲模态(屈曲因子:1.98061E+006)(绕工字钢的强轴) (c)三阶屈曲模态(屈曲因子:1.976E+006)(绕工字钢轴向扭转) 由以上两个软件分析结果可知,Midas Gen及Abaqus的分析结果基本一致,一阶屈曲模态为绕工字钢的弱轴,二阶屈曲模态为绕工字钢的强轴,三阶屈曲模态为绕工字钢轴向的扭转屈曲。 注释 ( Comments )   ( 如果您发现有错误,欢迎批评指正。邮箱:jidong_cui@163.com . 如果您喜欢这篇博文,请在上面给我 点个赞 吧!       …

[FEM][Abaqus][Midas][分析][工具] Midas2Abaqus模型转换工具

The page you current visit has been moved to: http://www.jdcui.com/?page_id=10470 最新内容已移步到这个页面: http://www.jdcui.com/?page_id=10470 程序图标 ( Program LOGO ) 程序介绍 ( Program Introduction) Midas Gen 模型转 Abaqus模型的工具 (Midas Gen Model to Abaqus Model) 程序图例 ( Program Gallery ) …

[钢结构][设计][工具] 对接焊缝计算

          注释 ( Comments )   ( 如果您发现有错误,欢迎批评指正。邮箱:jidong_cui@163.com . 如果您喜欢这篇博文,请在上面给我 点个赞 吧!         ( If you found any mistakes in the post, please let me know. Email : jidong_cui@163.com. If you like this posts, please give …

[Midas Gen][结构分析] 带加劲肋钢板有限元分析

工字型钢为主梁,槽钢为铰接次梁,铺设钢板,钢板铰接支撑在钢梁上。左模型钢板底设置角钢加劲肋,间距500mm,右模型为纯钢板。整个结构尺寸为1000mmx2800mm,钢板施加竖向均布荷载。 整体模型 钢梁 钢板竖向位移 (左模型,角钢的最大竖向位移为2mm,最大相对位移为1.5mm,角钢挠度为 1/(1.5/1000)=1/666;钢板的最大竖向位移为2.2mm,分布于跨中,最大相对位移为0.3mm,相应的挠度为1/(0.3/500)=1/1666;右模型:跨中位移最大,最大竖向位移为17.4mm,最大相对位移为17mm,相应的板的挠度为 1/(17/1000)=1/58。) 钢板的Von-Mises应力 (左模型:钢板的最大应力为60Mpa,主要集中在角钢端部的局部范围;右模型:钢板的最大应力为83Mpa,主要集中在跨中较大范围。) 注释 ( Comments )   ( 如果您发现有错误,欢迎批评指正。邮箱:jidong_cui@163.com . 如果您喜欢这篇博文,请在上面给我 点个赞 吧!         ( If you found any mistakes in the post, please let me know. Email : jidong_cui@163.com. If you like …

建筑结构常用钢材的设计强度[Design strength of structural steel]

建筑结构常用钢材的设计强度。www.jdcui.com, 崔济东博士, CJD, JiDong Cui。(1)钢材的厚度越大,抗拉、抗压和和抗弯强度越小。(2)“ GJ ” 代表 高性能建筑结构用钢。(3)一般主要承重构件,宜选用 Q345钢、Q390钢,一般构件宜选用Q235钢。(4)主要承重构件,当板材较厚时,选用GJ钢。GJ钢的详细属性可以查看 规范《GB/T 19879》 ,目前最新版本是 2015。(5)承重构件所用钢材的质量等级不宜低于 B 级。