[结构优化] 基于ETABS二次开发的超高层核心筒墙厚优化 案例一 (Case 1 of wall thickness optimization for super high-rise core tubes based on secondary development of ETABS)

实干、实践、积累、思考、创新。 来自团队小伙伴 黄元根 的分享 …… 基于ETABS二次开发的超高层核心筒墙厚优化 案例(一) 1. 工程概况 分享案例为某项目方案测算阶段,项目位于高烈度区(设防烈度8度半),结构高度接近300m,结构体系采用巨柱+型钢混凝土核心筒+斜撑,核心筒作为主要抗侧力构件,其墙厚直接影响结构的抗震性能以及经济性。对于高烈度区项目,结构减重尤为关键,本文基于ETABS二次开发+优化算法给出一种在满足设计要求前提下减小结构自重的解决方案。 2. 核心筒优化结果 项目核心筒竖向存在一定收进,墙体根据其平面位置以及高度设为变量,优化过程可描述如下: 优化目标:结构自重最小 约束函数:结构最大层间位移角1/450 设计变量:核心筒墙厚   结构软件 优化前(YJK) 优化后(YJK) 结构总质量(t) 200433 187156 结构周期(s) 4.78 4.97 最大层间位移角 1/452(X)1/470(Y) 1/449(X)1/462(Y)   …

[CSI OAPI][编程] CSI OAPI EX2: 基于虚功原理的伸臂桁架几何优化 [Geometric optimization of outrigger truss based on the principle of virtual work]

实干、实践、积累、思考、创新。 CSI API编程训练第二课,这次做一个基于虚功原理的伸臂桁架几何优化,主要训练如何通过编程控制SAP2000修改节点位置,自动提交计算分析,并提取构件的内力等。 对于桁架结构,根据虚功原理,结合单位荷载法可知,结构任意一点在指定方向的位移可按以下公式表示: $${\Delta = \sum {\int {\frac{{n{F_N}}}{{EA}}} } {\rm{ds}} = \sum {\frac{{n{F_N}L}}{{EA}}} }$$ 其中,\(n\)为杆件的虚拟轴力,\({F_N}\)为杆件的真实轴力,\(E\)为杆件的弹性模量,\(A\)为杆件的截面面积,\(L\)为杆件的长度。 根据Baker的研究可知,对于静定桁架结构,各杆件处于等应力状态时,结构杆件是最优的。这个最优说的是,对于给定挠度,当所有杆件均处于等应力状态时,所需结构材料用量最小;或者说对于给定材料用量的结构,当所有杆件均处于等应力状态时,结构挠度最小。 假设各杆件的应力水平均达到同一个值,设为\(e = \frac{{{F_N}}}{{EA}}\),此时结构任意一点在指定方向的位移公式变为以下: $${\Delta = \sum {\int {\frac{{n{F_N}}}{{EA}}} } {\rm{ds}} = e\sum {nL} …

[软件][工具][优化] ColPosOpt: Column Position Optimization under Complex facade (ColPosOpt: 复杂外立面下外框柱布置优化工具)

实干、实践、积累、思考、创新。 很久之前写的题目,随后更新。。。。         微信公众号 ( Wechat Subscription) 欢迎关注 “结构之旅” 微信公众号

[编程训练][软件] 粒子群优化算法求解无约束最优化问题 [Particle Swarm Optimization Algorithm for Solving Unconstrained Optimization Problems]

实干、实践、积累、思考,创新。 程序图标 ( Program Icon ) 程序介绍 ( Program Introduction) 假期花了几天研究粒子群优化算法,顺便写了这个小工具,简单测试无约束最优化问题,也顺便训练一下编程。 软件自带几个经典的PSO粒子群优化算法测试函数,具体包括: 0: Sphere 1: Eggcrate 2: Rosenbrock 3: Ackley 4: Schaffer 5: Rastrigrin 6: Cigar 7: Griewangk 8: Schwefel 几个函数的图像可以在这个博文查看:[笔记][智能算法]几个经典的PSO粒子群优化算法测试函数 (Benchmark …

[编程][算法][优化] 编程训练:函数的CONLIN线性化

坚持实干、坚持一线、坚持积累、坚持思考,坚持创新。     2018 12 03 挖的坑,现在来更新…… 微信公众号 ( Wechat Subscription) 欢迎关注 “结构之旅” 微信公众号 微信公众号 ( Wechat Subscription) 欢迎关注 “结构之旅” 微信公众号

[结构优化][编程][软件] 基于ETABS二次开发的结构优化设计程序及其在实际工程中的应用

实干、实践、积累、思考、创新。 来自小伙伴 黄元根 的分享,结构优化方面的专题。 1. 优化设计程序 1.1 优化设计理论 最优设计是人们在工程技术、科学研究等诸多领域经常遇到的问题,例如结构设计要在满足一定约束条件下所使用材料的总重量最轻。目前实际工程项目中优化问题解决方法一般依据经验积累进行主观判断,随着数学方法和计算机技术的快速进步,用建模和数值求解计算方法将会越来越显示出高效优势。 1.2 优化设计应用 ETABS软件作为国际上结构设计领域应用最广泛的设计软件,其准确性和可操作等方面存在一定优势。同时,ETABS开放二次开发接口,可供用户进行所需功能的开发。在此基础上,基于ETABS二次开发技术和优化算法开发适用于实际工程项目的计算程序,利用结构地震动力响应求解和软件开放性好的优势,可用于结构构件截面灵敏度分析、优化计算等,以实现结构最优设计。基于结构自重最小原则,本优化程序可实现不同类型构件的截面最优设计。 自编优化软件界面 2. 具体工程应用 不同复杂结构项目具有不同特点,其控制性指标往往也不同,结构计算分析需差异化、针对性分析,目前根据实际工程中遇到的优化设计问题,本优化程序可给出以下问题的解决方案: (1) 某高烈度区超高层结构 问题描述:结构地震效应与结构自身质量和刚度两者密切相关,工程中常常遇到增加墙厚位移角反而变大,原因在于墙厚增加后,结构自重增加导致地震力变大;如何在结构刚度与地震力之间平衡显得尤为关键,常规设计做法需要不断调整,费时费力且找不出两者变化规律,优化设计程序给出一种可行解决方案。 解决途径:将最大层间位移角作为约束条件,结构自重最小为优化目标,构件截面尺寸作为变量,实现结构最优设计; 某工程应用: 优化效果:经过结构优化设计后,在减小墙厚情况下,结构最大层间位移角得到减小,原因在于结构各层最大层间位移角分布更加均匀,更加充分利用了层间刚度,即使顶点位移增大。优化后,结构自重和地震作用得到减小,有利于减小结构钢筋用量,结构更加经济高效。 (2) 高度超过500m的某超高层结构 问题描述:项目结构高度达到500米,结构第一周期接近9s。当结构周期为控制因素时,结构周期与结构自重和结构刚度直接相关,如若剪力墙墙厚增加,结构刚度增强,结构周期如何变化难以直观判别,给结构优化设计带来一定难度。 解决途径:将结构周期作为约束条件,结构自重最小为优化目标,构件截面尺寸作为变量,实现结构最优设计; 某工程应用: 优化效果:经过结构优化设计后,直观给出低中高区的不同位置核心筒剪力墙厚度对结构第一周期的敏感性差异,为不同位置/不同区域核心筒墙厚给出不同的调整策略和方向。在设定结构周期以及满足层间位移角前提下,结构自重和结构地震效应同时减小,结构更加经济高效。 (3) 某高位连体结构 …

[优化][ABAQUS][Midas2Abaqus] Topology Optimization of a short cantilever beam by Abaqus [短悬臂梁拓扑优化分析算例]

又一个简单的优化小例子, PS. 某人答对了结果 😆 。 【1】Midas Gen Model 【2】Midas2Abaqus Model 【3】Abaqus Model 【4】Optimization Results 优化目标:刚度最大化。 约束条件:体积优化 30%。 最终结果是一个三角形。 微信公众号 ( Wechat Subscription) 欢迎关注 “结构之旅” 微信公众号

[优化][ABAQUS][Midas2Abaqus] Topology Optimization of a clamped-clamped beam by Abaqus [两端固支梁拓扑优化分析算例]

做个简单的优化小例子,后续有时间继续再做深入研究吧。这些都是拓扑优化届最初级最初级的小例子。很多书本都可以看到。 先从最简单的拓扑优化开始。后续陆续分享一些实际工程的优化案例,贴近工程的一些优化思路及软件开发应用案例。 【1】Midas Gen Model 【2】Midas2Abaqus Model 【3】Abaqus Model 【4】Optimization Results 优化目标:刚度最大化。 约束条件:体积优化 50%。 (1) Step 5 (2) Step 10 (3) Step 25 (4) Strain Energy 到25步后,结构基本稳定。可以看出优化后的结构的轮廓。 后续再继续深入研究。 微信公众号 ( Wechat Subscription) 欢迎关注 “结构之旅” 微信公众号