[结构][FEM][Midas Gen] 结构的弯曲变形和剪切变形分量——简单算例 (Bending induced and Shear induced Lateral Deformation of Structure)

实干、实践、积累、思考、创新。 几个简单算例,测算的侧移,其中有多少是弯曲变形引起,多少是剪切变形引起。 接下来有空再找几个实际工程算例测算,看看方法是否合理。 微信公众号 ( Wechat Subscription) 欢迎关注 “结构之旅” 微信公众号

[反应谱][动力学][抗震] 不同阻尼比反应谱曲线的相交现象 (The Curve Intersection Phenomenon of Response Spectra with Different Damping Ratios)

实干、实践、积累、思考、创新。 采用 SPECTR反应谱分析软件 (下载链接: http://www.jdcui.com/?p=1875 ) 对几个地震波进行位移谱的求解,结果如图1~图5所示,可以发现,随着阻尼比的增大,大部分地震波在各周期范围内反应谱值减小。但是部分地震波在某些周期范围内,阻尼比增大,但是位移谱值不一定减小。 在图形上表现为不同阻尼比的反应谱曲线在某些周期范围内出现相交的现象(见图1及图3)。同样,拟加速度反应谱也存在这个现象,因为拟加速度反应谱是由位移谱转换过来的。 初看这个现象感觉很奇怪,其实仔细想也十分正常。 以图1的反应谱为例,在周期2.5s左右出现明显的相交现象。把2.5s周期各阻尼比单自由度结构的位移时程绘制出来,见图6. 由图6可见,各阻尼比下,位移时程曲线的整体趋势比较一致,该凸的地方大家一起凸起来,该凹的地方一起凹下去,即趋势是一致,但是随着阻尼比的增大,出现绝对值最大值的时间不同了。 如图,阻尼比为20%的位移最大值出现在30s左右,其他阻尼比下位移绝对值最大值出现在40s左右。且阻尼比增大到20%后绝对值比其他阻尼比在40s左右出现的绝对值大。因此不同阻尼比的反应谱曲线就出现了交点。 因此,不同阻尼比的反应谱曲线可能出现交点。因为,反应谱纵坐标是绝对值。阻尼比发生改变,可能整个响应时程的整体趋势没改变,但是最大值出现的位置会不同,大小的增大或减小规律也不同,而反应谱记录的是绝对值。 所以,千万别闭着眼睛说,阻尼比越大,位移越小。瞎说!!! 😎 😀  图 1 图 2 图3 图 4 图 5 图 6 微信公众号 ( Wechat Subscription) 欢迎关注 “结构之旅” 微信公众号

[选波][地震波][科研] 隔震结构波选波案例3(GMS选波系统-选波应用案例22)

实干、实践、积累、思考、创新。 用GMS选波系统( http://www.jdcui.com/?page_id=6118 )做的一个隔震结构选波案例。 选波基本信息: 设防烈度 8度0.2g 加速度峰值cm/s2 600 地震影响系数最大值 1.35 特征周期Tg/s 0.55 第一周期 第二周期 第三周期 隔震前 1.435 1.43 1.316 隔震(中震) 3.152 3.147 2.914 隔震(大震) 3.548 3.542 3.332 隔震(极大震) 3.625 3.619 …

[混凝土][Concrete][笔记] 钢筋混凝土局部承压 (Local Compression of Reinforced Concrete)

实干、实践、积累、思考、创新。 (1)局部承压时,在局部承压面上产生较大的纵向压应力,随着离开局部受压面,压应力逐渐扩散到整个截面上,趋于均匀,扩散距离约为构件的截面高度h。 (2)在靠近局部受压面附近,还存在横向拉应力,使混凝土局部承压时发生纵向裂缝,进而发生劈裂破坏。随着李凯凯局部受压面的距离不断加大,横向拉应力变为压应力最后横向应力趋于零。 (3)局部受压的破坏形态与构件截面面积Ac及局部受压面积Al的比值有关。Ac/Al较小时,横向拉应力使得构件出现纵向裂缝,以劈裂破坏为主。 (4)混凝土局部承压的抗压强度高于全截面受压时候的轴心抗压强度,提高程度随Ac/Al的增大而增大,因为Ac/Al越大,相当于局部受压区受到受压区外的混凝土的约束越大,使得局部受压区处于“三向受压”状态上,这一强度的提高在公式上体现为局部承压的承载力计算公式多了个βl提高系数。βl=(Ab/Al)0.5,Ab为局部承压时的计算面积。 (5)防止局部承压的主要方法: a. 设置刚度较大的垫板,扩大局部受压面积; b. 提高混凝土强度; c. 配置间接钢筋。 (6)间接钢筋的作用是什么?前面提到了在靠近局部受压面附近,混凝土有横向拉应力,配置间接钢筋就是承担这些拉应力,限制裂缝开展,同时也相当于增强混凝土的“套箍”约束作用。 (7)配置间接钢筋的局部受压承载力计算公式上,间接钢筋的作用通过将间接钢筋折算为竖向钢筋的方式来计算。 微信公众号 ( Wechat Subscription) 欢迎关注 “结构之旅” 微信公众号

[FEM][SteelStruct] 工字钢梁均布荷载下曲屈模态 (Buckling modes of I-Shape beams under uniform load)

实干、实践、积累、思考、创新。 随后更新…                   微信公众号 ( Wechat Subscription) 欢迎关注 “结构之旅” 微信公众号

[FEM][Midas Gen] 四边简支板纯剪下的屈曲模态(Shear Buckling Analysis of a Simply Supported Plate under Pure Shear)(有限元及弹性力学解)

坚持实干、坚持一线、坚持积累、坚持思考,坚持创新。 方形钢板纯剪模拟,侧向施加均布剪切力线荷载。square plate under pure shear 第1阶 临界荷载系数:1.791E+003;沿45度方向屈曲。 第2阶 临界荷载系数:2.200E+003 沿45度方向,屈曲为2个半波。 第3阶 临界荷载系数:4.759E+003 第4阶 临界荷载系数:5.122E+003 第5阶 临界荷载系数:5.861E+003;沿受拉对角线方向屈曲。 第10阶   有限元解与弹性力学解对比: 有限元分析的一阶屈曲临界荷载结果为1.791E++003,与弹性力学解Ncr为1738.9接近。 Ncr = 9.34*π*π*E*t3/12/(1-v*v)/b/b = 9.34*π2*2.06*10e5*103/12/(1-0.3*0.3)/1000/1000 =1738.96 微信公众号 ( Wechat Subscription) 欢迎关注 “结构之旅” 微信公众号

[FEM][SteelStructures] 有侧移与无侧移框架的屈曲模态 (Buckling Modes of Frames with and without Sidesway)

实干、实践、积累、思考、创新。 有侧移框架及无侧移框架是钢结构中常用的概念,有侧移及无侧移框架构件的计算长度取值不同。 有侧移框架柱,计算长度系数大于1.0,而无侧移框架柱计算长度系数在0.5~1.0之间,为啥 😆 ,仔细想想,其实从屈曲模态也可以看出来。 有侧移及无侧移框架的屈曲模态差别,有侧移框架失稳为反对称失稳,构件为双曲率屈曲,无侧移框架失稳为对称失稳,构件为单曲率屈曲。。。 微信公众号 ( Wechat Subscription) 欢迎关注 “结构之旅” 微信公众号

[FEM][Midas Gen] 四边简支板的受压屈曲分析(Compress Buckling Analysis of a Simply Supported Plate)(有限元及弹性力学解)

坚持实干、坚持一线、坚持积累、坚持思考,坚持创新。 分析用Mdias Gen,正方形四边简支板,受侧向单位线荷载作用,进行屈曲分析。 第1阶 临界荷载系数:7.449E+002 X方向及Y方向均屈曲为1个半波,也即最容易失稳的模态。 第2阶 临界荷载系数:1.164E+003 X方向屈曲为2个半波及Y方向均屈曲为1个半波 第3阶 临界荷载系数:2.072E+003 X方向屈曲为3个半波及Y方向均屈曲为1个半波 第4阶 临界荷载系数:2.982E+003 X方向屈曲为2个半波及Y方向均屈曲为2个半波 第7阶 临界荷载系数:4.662E+003 X方向屈曲为1个半波及Y方向均屈曲为2个半波。 PS.第7阶才才轮到X方向屈曲为半个波形。 第10阶 一阶屈曲临界荷载弹性力学解为744.739与有限元分析结果7.449E+002一致。 验算如下: Ncr = Kπ2Et(t/b)2/12(1-v2) = 4 * 3.14159262*2.06*105*10*(10/1000)2/12/(1-0.32)=744.739 微信公众号 ( Wechat Subscription) …

[YJK][设计][笔记] YJK中的嵌固端所在层号参数

坚持实干、坚持一线、坚持积累、坚持思考,坚持创新。 笔记笔记,原因遇到一个神奇错误,做个help。 来自YJK的hlep: 该参数用于确定设计时的嵌固层,如嵌固端梁柱的配筋构造、嵌固层刚度比限值等方面。 软件以输入的嵌固层层顶嵌固,如果地下室顶板作为上部结构嵌固端,则该参数数值=地下室层号;如果在基础顶面嵌固,则该参数数值=0。软件默认嵌固端所在层号=地下室层号,如果修改了地下室层号,应注意确认嵌固端所在层号是否需要修改。 输入嵌固端所在层号后,软件按规范的相关规定进行设计,如按《抗震规范》6.1.14.3.2条对梁、柱钢筋进行调整(其中,该条主要规定了地下室 楼板、梁、柱及剪力墙的配筋放大调整及地下一层与地上一层的刚度比);按《高规》3.5.5.2条确定刚度比限值等。如果嵌固层以下设置了地下室,则按《抗规》6.1.3条,将嵌固端所在层号当做地下一层,并对嵌固端所在层号的抗震等级不降低;对于嵌固端层以下的各层的抗震等级和抗震构造措施的抗震等级分别自动设置:对于抗震等级自动设置为四级抗震等级,对于抗震构造措施的抗震等级逐层降低一级,但不低于四级。 另外需要注意的是,YJK默认的剪力墙底部加强区从嵌固层上层算起。 微信公众号 ( Wechat Subscription) 欢迎关注 “结构之旅” 微信公众号

[结构][有限元][PFSAP] 平行弦桁架简单算例及概念 ( Basic concepts and examples of parallel chord truss)

实干、实践、积累、思考、创新。 用 PFSAP( [有限元][编程][日记] PFSAP:平面框架弹性静力分析程序 )做几个简单的平行弦桁架算例。 model displacement axial force reaction force model 2 vs model 3 model 1 vs model 4 刚度从大到小: 2 3 4 1,传力路径越小刚度越大。 方案2与方案3、方案1与方案4的斜腹杆拉压受力成反对称。 微信公众号 ( Wechat Subscription) 欢迎关注 “结构之旅” …

[结构][软件] 墙体稳定验算 (Stability Calculation of Walls)

坚持实干、坚持一线、坚持积累、坚持思考,坚持创新。 随后更新……           微信公众号 ( Wechat Subscription) 欢迎关注 “结构之旅” 微信公众号Set featured image

[软件][地震动][Update] GMP v2020: A tool for Calculating Ground Motion Parameters for Seismic Analysis of Structures [结构抗震分析地震动强度指标/地震动参数计算工具]

新版软件已发布,移步这个页面:[软件][地震动][更新] GMP v2024: A tool for Calculating Ground Motion Parameters for Seismic Analysis of Structures [结构抗震分析地震动强度指标/地震动参数计算工具] 实干、实践、积累、思考、创新。 程序图标 ( Program Icon ) 程序介绍 ( Program Introduction) 根据小伙伴的建议与要求,更新 GMP地震动参数计算软件 (1)更新了界面的友好性 (2)增加了两个参数目前一共支持48个参数了, (3)增加了批量分析功能 下面逐个介绍。 …

[YJK][盈建科] YJK提示“内存从前记录不一致”错误

坚持实干、坚持一线、坚持积累、坚持思考,坚持创新。 YJK提示“内存从前记录不一致”错误,经检查是内存不足引起,在偶然偏心分析那一步内存消耗暴增。 估计是由于内存不足,导致了数据覆盖,引起不一致。 微信公众号 ( Wechat Subscription) 欢迎关注 “结构之旅” 微信公众号

[软件][试验][编程] NoiseRemoval: A Program for De-Noising of Experimental Data [试验数据降噪修正工具]

实干、实践、积累、思考、创新。 小伙伴让做的一个小工具,用于修正试验数据中的噪声,适合那些许多波动试验数据曲线。 程序图标 ( Program Icon ) 程序介绍 ( Program Introduction) 修正试验数据中的噪声,适合那些许多波动试验数据曲线。 另外网站还提供了其他几款用于修正试验数据的工具: NoiseRemoval:http://www.jdcui.com/?p=15046 该程序主要作用是,修正试验数据中的噪声,适合那些许多波动试验数据曲线。 OutlierRemoval:http://www.jdcui.com/?p=14365 该程序主要作用是,剔除数据中的异常点,毛刺点,跳跃点。数据中的这些异常点及毛刺点通常是因为采集仪器信号不稳定引起的。 Loop Modifier: http://www.jdcui.com/?p=12201  该程序主要用于根据试验的规律局部处理试验数据中的错误离散点。 SawtoothRemove: http://www.jdcui.com/?p=15493 该程序主要用于去除滞回曲线数据中的锯齿。 DataSmoothing: http://www.jdcui.com/?p=15650 该程序主要用于平滑试验数据,可处理滞回曲线的波动情况,同时可一定程度处理试验数据中的锯齿问题、噪声问题。 PS:不同的试验数据问题需要用不同的方法进行修正,每个程序都有其特别的功能。 程序界面 ( Program Interface ) 下载 (  …

[YJK][笔记][软件] 盈建科中的板单元测算 (Slab Elements in YJK)

实干、实践、积累、思考、创新。 YJK 中可以说包含 4 类板壳单元: (1)刚性板 (2)弹性板 3:平面内无限刚,平面外有刚度 (3)弹性板 6:平面内及平面外都有刚度, (4)弹性膜:平面内有刚度,平面外无刚度。 严格来说,刚性板不算板单元,因为在有限元内,只是对应节点的自由度约束。弹性板 3 与弹性膜叠加就是弹性板 6。 简单测算: 布置楼板 X方向的均布荷载 不考虑楼板自重,左边楼板不加荷载,右边楼板附加荷载。 特殊板的设置 恒载下 X向位移 恒载下 Z向位移 恒载下楼板应力 FXX(平面内内力) 恒载作用下 Mxx(平面外内力,弯矩) 微信公众号 ( Wechat Subscription) 欢迎关注 “结构之旅” 微信公众号

[参数化][笔记] 采光顶参数化建模分析案例 [Rhino/Grasshopper/Midas Gen]

实干、实践、积累、坚持、创新。 来自小伙伴 张俊毫 的参数化建模分享。 这是之前做过的一个类似的项目,此次对其进行精简处理,使生成逻辑更加清晰有条理,以便有利于参数化入门、初级水平读者的阅读。以下根据采光顶的生成逻辑,分成几部分进行讲述: 1.设置采光顶的整体控制参数,即控制采光顶整体定位参数“采光顶中心”,采光顶的体量参数“采光顶直径D”和“采光顶高H”,采光顶外观参数“花瓣宽度W”。 2.设置通过采光顶底板圆上的左、右端点及顶点三点生成采光顶外轮廓弧线,将弧线绕中心轴旋转360°可生成采光顶外表皮(此处为结构外表皮)。 3.通过如图所示三个点画弧线,并将此弧线镜像形成一个“花瓣”,并通过环形阵列每隔15°生成一个花瓣,这样就获得了一个莲花形的图形。 4.(1)求得“花瓣弧线”各个交点,并把交点投影到采光顶外表皮上,可获得经线、纬线方向的杆件节点。 (2)删除中心最高点和重复的点,并通过数据处理,使每组数据的点按标高进行排列,通过每组点生成多段线,即得经线方向杆件。   5.将经线方向上的点进行数据翻转处理(Flip Matrix),删除重合的点,并将点按照圆周顺序排列,连接每组点即可得到纬线方向的杆件。 6.运用Tree Branch Index电池获取纬线方向上的点中标高最高的一组,再对这组数据用Cull Pattern电池每隔一个点删除一个点,得到A组点,创建与此A组点标高相同的采光顶中心O,将O点与A组点连接创建向量(相邻两个向量夹角30°),将0点沿向量移动距离L,获得B组点,连接B组点可的顶部构件的同心多边形的内多边。将A、B组点一一对应连接得到一组射线,取射线的等分点(C组点),控制两个等分点的间距不小L,并将B、C组点投影到采光顶外表皮,可得B’、C’组点。这样A、B’、C’就是顶部构件全部控制点,生成杆件的方法可参照经、纬线方向杆件的生成方法。 7.完成的整体参数化模型如下,可以导入midas计算软件进行结构计算啦! 最后看看动图演示: 微信公众号 ( Wechat Subscription) 欢迎关注 “结构之旅” 微信公众号

[钢结构][笔记]焊接工字钢梁翼缘及腹板焊缝的应力状态 (The Stress State of Web to Flange Welds in Welded I-Secition Girders)

坚持实干、坚持一线、坚持积累、坚持思考,坚持创新。 焊接工字钢梁翼缘及腹板焊缝的应力状态: (1)弯矩作用下引起的沿着梁纵向的水平剪切应力 (2)如果存在集中竖向荷载,还包括集中竖向荷载引起的局部压应力。 微信公众号 ( Wechat Subscription) 欢迎关注 “结构之旅” 微信公众号

[钢结构][软件] 格构柱缀条布置方案力学概念测算对比 (Lace Bar Arrangement Patterns in Steel Lattice Column)

坚持实干、坚持一线、坚持积累、坚持思考,坚持创新。 缀板格构柱通常看成刚架分析,柱分肢看成压弯构件。 缀条格构柱通常按桁架分析,柱分肢只受轴心压力。 以下是6种缀条布置方案及其受力分析。 方案1:不带横缀条的单斜缀条体系。 方案2:带横缀条的单斜缀条体系。 方案3:不带横缀条的双斜缀条体系。 方案4:带横缀条的双斜缀条体系。 方案5:带横缀条,斜缀条朝一个方向倾斜(斜缀条不连续)。 方案6:带横缀条,斜缀以柱中为分界,上下斜缀条方向不同(斜缀条仅在中点不连续)。 从分析结果可见: (1)缀条用truss模拟,即便竖向力在顶部均匀施加到两柱分肢,柱分肢也不可能仅受轴力,同样会受弯矩及剪力。 (2)方案1级方案2相对最简便 (3)方案3是方案1的加强。 (4)方案4是方案3基础上加上横缀条,由于横缀条的影响,在受到竖向力的情况下,柱身压缩,横缀条约束斜缀条的变形,斜缀条产生的额外轴力最大。 (5)方案5在竖向向力下产生的斜向位移最大,不利。 (6)由于方案5、方案6斜缀条是不连续的,由节点受力平衡,在剪力作用下,横缀条必然受力,承担抗剪。 缀条布置 轴力 剪力 弯矩 变形 微信公众号 ( Wechat Subscription) 欢迎关注 “结构之旅” 微信公众号

[结构][设计][YJK][软件] 盈建科中的刚性杆和虚梁

坚持实干、坚持一线、坚持积累、坚持思考,坚持创新。 刚性杆对应有限元中的节点自由度束缚,这是在YJK中的一种简化操作。 100*100的梁在YJK中默认为虚梁,虚梁主要用于导荷及楼板分界,也主要是用于导荷。实际不设计这根梁。 刚性杆和虚梁是不同的,要注意哦。 刚性杆要设置材料为刚性杆。 先写到这,填好这个坑,后面有时间在记录一些测试结果。 微信公众号 ( Wechat Subscription) 欢迎关注 “结构之旅” 微信公众号

[结构][设计] 抗剪型钢混凝土连梁的剪力传递及设计 (抗剪截面超!!)

坚持实干、坚持一线、坚持积累、坚持思考,坚持创新。 混凝土连梁抗剪截面超通常可以在梁内设置型钢处理,将混凝土连梁变为型钢混凝土连梁。 由于设置型钢主要用于抗剪,因此,型钢翼缘的尽可能窄,尽可能少影响墙柱的配筋。 型钢连梁设计时,需要考虑型钢剪力的分配,由于型钢弹模远大于混凝土,剪力优先分配到型钢。 (1)当连梁剪力大于型钢抗剪承载力时,型钢实际承担的剪力=连梁剪力 (2)当连梁剪力小于型钢抗剪承载力时,型钢实际承担的剪力=型钢抗剪承载力 型钢混凝土连梁另外一个需要注意的问题是型钢剪力的传递。传递方式又和梁端剪力墙的设计有关。 (1)当梁端墙内设置钢柱时,传力最直接,连梁的型钢连接端部钢柱,连梁的剪力直接传递给钢柱,钢柱通过栓钉等方式传递给混凝土。 (2)当梁端无设置钢柱时,则连梁的钢骨需要输入剪力墙一定的长度,并在钢骨上设置栓钉,必要时候还要在钢骨梁翼缘设置承压板,钢骨承担的剪力通过承压板及栓钉抗剪的方式,传递给剪力墙混凝土。这个方式就需要计算栓钉及混凝土的局部承压问题。 微信公众号 ( Wechat Subscription) 欢迎关注 “结构之旅” 微信公众号

[结构][设计][YJK][笔记] 记录一个盈建科软件应用问题(施工模拟3计算报错)

一个带支撑的高层建筑模型,用YJK2.0.3计算报错,后面发现是 YJK2.0.3施工模拟3 计算出错的问题,检查很久,于是降低YJK版本到1.9.3.2后,施工模拟3可以计算,其他参数及施工顺序两个模型都是一致的。 不过从2.0.3降低到1.9.3.2后,会存在部分构件丢失的情况。 相关( Related Topics) [01]. [Tool] YJK(盈建科)桩荷载统计工具 [02]. YJK转PKPM出现“访问XX.jws发生未知错误”的解决办法 [03]. YJK(盈建科)的三处材料定义 [04]. YJK(盈建科)截面建模工具-快速导入 [05]. YJK1.7人工波功能测试 [06]. YJK地震波反应谱分析与地震波选取 [07]. YTP – A Pre Process Program for PERFORM-3D [YTP PERFORM-3D前处理软件] [08]. YJK(盈建科)显示截面功能测试 [09]. YJK(盈建科)中的删除功能 [10]. YJK出现构件非常规显示的解决办法 [11]. YJK异形墙的建模 [12]. [编程][工具][结构设计][超限设计]超限报告工具之——【结构整体指标】统计与报告生成软件 [13]. [软件][工具][结构设计][超限设计]超限报告工具之——【计算参数】统计与报告生成软件 …

[选波][地震波][科研] 近场地震动波选波案例(GMS选波系统-选波应用案例21)

实干、实践、积累、思考、创新。 用GMS选波系统( http://www.jdcui.com/?page_id=6118 )做的一个选波案例,帮助小伙伴选波进行近断层(Near-fault earthquake motions)相关的结构抗震研究。 基本选波参数。 (1)抗震设防烈度8度,二类场地,设计地震分组第一组(特征周期0.35),阻尼比0.05。 结构前三阶周期 1.5199、0.2614、0.2279。 (2)选波说明,按我国抗规,峰值加速调整为70cm/s2,对应为0.07143g,其中g为重力加速度,1g = 980cm/s2 (3)人工波的时间间隔为0.02s,加速度单位为cm/s2,加速度峰值为70cm/s2 (4)近场通过控制地震波的断层距来控制,所选的天然波断层距不大于20km (5)天然波的时间间隔看具体的地震波,加速度单位为g,加速度峰值为0.07143g。 选波结果: 反应谱 地震波参数 相关案例 ( Related Examples) [01]. [工程][选波][地震波] 某超高层选波案例(GMS选波系统-选波应用案例1) [02]. [工程][选波][地震波] 某框筒高层建筑结构选波案例(GMS选波系统-选波应用案例2) [03]. [工程][选波][地震波] 某多层框剪建筑结构(短周期)选波案例(GMS选波系统-选波应用案例3) [04]. [工程][选波][地震波] 某钢筋混凝土框架-核心筒高层建筑结构选波案例(GMS选波系统-选波应用案例4) …