[程序][Web开发] GB_SPECT_Web: 国标反应谱计算工具 网络版 [Chinese Design Code Response Spectrum Curve Generator —— Online version]

实干、实践、积累、思考、创新。 程序图标( Icon ) 程序介绍 ( Introduction) GB_SPECT_Web 是一个网页版的绘制反应谱的程序,是这两天练习Web开发编写的一个非常简单的程序。 程序的功能是生成抗规 GB 50011-2010 《建筑抗震设计规范》的设计反应谱曲线,并可保存为EXCEL数据表。 程序的地址是:http://www.jdcui.com/GBSPECT/ 使用者可以在 浏览器(Chrome、Edge、Firefox 等)中输入上述地址,即可直接使用,运行效果如下: Chrome浏览器的显示效果: Firefox 浏览器的显示效果: 这个程序是改编至原来的 windows桌面版程序 GB_SPECT,原先的GB_SPECT经历了两个版本的更新,下载地址如下: GB-SPECT V2014: [下载][软件][规范]GB-SPECT V2014: Chinese Code’s Design Response Spectrum[中国规范反应谱生成程序] GB-SPECT …

[地震动][研究][软件] RSFS: Response Spectra and Fourier Spectra [反应谱及傅里叶谱对比分析工具]

实干、实践、积累、思考、创新。 程序图标( Icon ) 程序介绍 ( Introduction) 随后更新…… 最近做研究写的程序,有需要的人可以关注一下。       相关内容(Related Topics) [01]. [Tool] SPECTR – A program for Response Spectra Analysis [反应谱计算程序] [02]. [程序][Tool] Ground Motion Selection [强震记录选取] [03]. [程序][软件]Ground Motion …

[地震动][软件][研究] DCF_SPECT: A Tool for Calculating Damping Correction Factor of Earthquake Spectrum [地震反应谱阻尼修正系数计算工具]

实干、实践、积累、思考、创新。 程序图标( Icon ) 程序介绍 ( Introduction) 程序最主要的功能是,计算不同类型反应谱的 阻尼修正系数( Damping Correction Factor )。 程序支持一共支持同时指定 15个阻尼比。 程序支持的反应谱类型包括:相对位移反应谱、相对速度反应谱、绝对加速度反应谱、伪速度反应谱 和 伪加速度反应谱。 程序支持多组地震波动 批量计算 及结果批量输出。 除此之外,程序还有以下特点: (1)多种加速度时程格式支持,一次可导入多组加速度时程 (2)基线修正:软件提供线性和抛物线基线修正方法 对加速度时程进行修正 (3)加速度积分:加速度积分生成相应的位移时程序和速度时程 (4)目前支持以下几种弹性反应谱的分析:相对位移反应谱、相对速度反应谱、绝对加速度反应谱、拟速度反应谱和拟加速度反应谱 (5)支持图形式和表格形式查看时程数据、反应谱数据。表格数据支持复制操作,可方便通过快捷键将数据粘贴至Excel快速绘图 (6)可自由选择坐标轴进行谱曲线绘制,方便谱曲线结果的对比 (7)批量计算分析:加速度时程的积分和反应谱批量分析,并支持批量导出分析结果。 教程及案例 (Examples) …

[软件][案例] SPECT_ASCE Manual and Example: ASCE 7 Design Response Spectrum Curve [SPECT_ASCE手册及案例: 美标ASCE 7设计反应谱参数确定]

实干、实践、积累、思考、创新。 SPECT_ASCE程序的使用手册及案例,由团队成员 吴金诚(WJC) 整理,SPECT_ASCE程序更多信息可查看这个连接:[笔记][美标][软件] SPECT_ASCE: A Tool to Generate Design Response Spectral Curve for ASCE 7-16 [ASCE 7-16 美标设计反应谱曲线生成器]  01 界面功能介绍 ( Main page introduction) 02 新增反应谱 ( Add new …

[笔记][美标][软件] SPECT_ASCE: A Tool to Generate Design Response Spectral Curve for ASCE 7-16 [ASCE 7-16 美标设计反应谱曲线生成器]

实干、实践、积累、思考、创新。 程序图标 ( Program Icon ) 程序介绍 ( Program Introduction) 断断续续,研究欧美规范设计。学习最好的方法,就是动起手来。因此边看边学,边动手做些小东西是最好的方法。 该程序功能是根据美规 ASCE 7-16 ( Minimum Design Loads and Associated Criteria for Buildings and Other Structures ) 建立反应谱曲线。程序为团队成员 吴金诚(WJC) 的编程训练作品。 The main  …

[软件][地震工程] IRSA 案例5——地震波能量反应谱分析 ( Seismic Wave Energy Response Spectrum Analysis Examples of IRSA)

实干、实践、积累、思考、创新。 地震波能量谱是按照反应谱理论的思路建立的一种以能量为评价指标的反应谱。 关于地震动中的能量的相关知识可查看这个链接:[地震工程][动力学][Chapter14]地震作用下结构的能量分析 [Energy analysis of structures under earthquake] IRSA ( [软件][地震工程][科研][更新] IRSA 2022: Inelastic Response Spectra Analysis Program (弹塑性反应谱及单自由度非线性地震分析工具) ) 提供了两大类能量谱: (1)延性需求反应谱(等屈服强度系数谱)(Ductility Demand Response Spectra,Equal Yield Strength Coefficient Response Spectra) …

[软件][地震工程] IRSA 案例1 —— 等延性反应谱分析 ( Constant Ductility Response Spectra Analysis Examples of IRSA)

实干、实践、积累、思考、创新。 以下算例采用IRSA [软件][地震工程][科研][更新] IRSA 2022: Inelastic Response Spectra Analysis Program (弹塑性反应谱及单自由度非线性地震分析工具) 进行等延性谱反应谱的计算,具体步骤: (1)导入地震波 Import Ground Motion (2)设置分析参数 Set Analysis Parameters (3)运行分析 Run Analysis (4)查看分析结果 Check Analysis Results IRSA中提供的等延性反应谱类型包括以下15种: 相对位移 Displacement …

[软件][地震动] AEEG人工地震波合成 —— 案例1(拟合自定义反应谱)

实干、实践、积累、思考、创新。 使用AEEG( [工具][软件][地震动] AEEG: A Program for Artificial Earthquake Accelerograms Generation [人工地震波合成软件]  )做个基于自定义反应谱拟合人工波的例子。 STEP 1: 准备自定义反应谱数据 将反应谱数据按 两列准备到文本文件中,第一列为周期,单位为s,第二列为谱加速度,单位为g,即一个重力加速度。 STEP 2: 导入自定义反应谱 点击 [导入自定义反应谱] 将反应谱数据导入,可以在 “目标谱” 选项卡看到导入的反应谱的形状,可检查是否导入正确。 STEP 3: 设置人工波参数,生成人工波 设置人工波参数,点击“生成人工波”按钮,软件会根据设置的参数进行人工波拟合。拟合的人工波可以通过 人工波时程 …

[科研][工具][地震动] RSF Response Spectrum Fitting v2022: 反应谱拟合及反应谱特征参数提取工具 [RSF: A tool for fitting response spectrum and extracting response spectrum parameters]

实干、实践、积累、思考、创新。 程序图标 ( Program Icon ) 程序介绍 ( Program Introduction) 【科研小工具】:反应谱拟合,反应谱特征参数提取。网友建议我做的一个小软件,帮助学生科研。 主要参考论文:王国新, 陶夏新, 姜海燕. 反应谱特征参数的提取及其变化规律研究[J]. 世界地震工程, 2001, 17(2):73-78. 旧版软件连接:[科研][工具][地震动] RSF: Response Spectrum Fitting v2018: 反应谱拟合及反应谱特征参数提取工具 [RSF: A tool for fitting response spectrum …

[软件][抗震][动力学] RSMDOF: A Tool for Mode Superposition Response Spectrum Analysis of Shear-Type MDOF System [RSMDOF: 多自由度剪切层模型振型分解反应谱法计算工具]

实干、实践、积累、思考、创新。 马上更新……(ps. 2018年12月写下的题目,       相关博文( Related Topics) [01]. [Tool] SPECTR – A program for Response Spectra Analysis [反应谱计算程序] [02]. [程序][Tool] Ground Motion Selection [强震记录选取] [03]. [程序][软件]Ground Motion Library [强震记录管理] [04]. Artificial ground …

[下载][软件][地震工程] Spectr_Evolution: Seismic response spectrum evolution [地震波反应谱演化][反应谱随积分时间长短的变化]

实干、实践、积累、思考、创新。 写在前面: 受 徐自国 博士 的idea的启发,写了这个地震波反应谱演化工具,idea来源于徐总。主要用于分析地震波反应谱随选取的地震波计算时间长短的一个演化。可以有不同的思考。感兴趣的朋友可以下来看看。以下是软件简介。 程序图标( Program Icon ) 程序介绍 ( Program Introduction) 主要用于分析地震波反应谱随选取的地震波计算时间长短的一个演化。还有一些其他思考。后续再陆续放上来。 程序视频:     程序截图: 程序下载 ( Program Download ):  下载: Spectr_Evolution(地震波反应谱演化).rar ( PS. 程序免费下载 ,欢迎大家给我提意见 ,敬请尊重劳动成果 ) 相关话题 ( Related Topics) [01]. [Tool] …

[动力学][地震] 振型分解反应谱法构件地震力的计算过程?

实干、实践、积累、思考、创新。 小伙伴在看《高规》4.3.10时,问:YJK软件,再算地震力时,是先得到楼层地震力,然后施加在质心上,做后期的构件分析吗。还是直接细分构件单元,在构件单元上得到地震力? 这个疑问可能很多初学者会有,记得最初自己看这个公式的时候也是这么个疑问,如果了解振型分解反应谱法,那么这个疑问就可以消除了。 这里面有以下几点个人理解: (1)如果仅考虑水平地震作用,且全楼都设置刚性隔板假定的话,那么YJK的处理应该是每个刚性隔板层包含两个平动自由度及1个转角自由度,也就是所谓的“侧刚模型”,即不考虑节点的竖向位移及转角位移,此时整体方程的自由度对应的力就是刚性隔板的两个水平力及扭矩,也就是常常说的楼层的地震力。 (2)如果仅考虑水平地震作用,不是全楼设置刚性隔板,还有部分弹性板,按道理软件应该整体形成刚度矩阵,那么整体方程的自由度上,有两类,一部分是节点的平动自由度,一部分是刚性隔板的自由度,刚性隔板主节点上的自由度依然包含两个平动自由度和一个扭转自由度。对应的,整个方程的自由度的地震力自然也是包含两类,一类是弹性节点上,即相应节点的地震力,另一类是刚性隔板主节点上的力,为两个水平力及扭矩。 另外,用侧刚模型,按道理还会涉及一个过程,就是静力凝聚!如果是侧刚模型,即只考虑单元节点的平动自由度,而实际计算单元如杆元通常是有三个平动自由度,三个转动自由度,因此,与整体刚度相比,多出了节点的竖向自由度及转角自由度,这个时候单元的刚度和整体刚度的自由度是对不上的,此时需要对单元刚度进行静力凝聚,把节点的竖向自由度及转角自由度消去。这样才能反应真实结构的弯剪特性。 (4)最后一个问题是关于振型分解反应谱法构件地震力的计算问题。从逻辑上来说,不需要得到楼层的地震力,施加到质心上,再来算构件的地震力。振型分解反应谱法,本质上是个静力法,振型分解反应谱法,首先形成刚度矩阵、质量矩阵后,进行模态分析,获得振型,进一步结合反应谱,可直接获得自由度上的位移,也能获得上面公式说的自由度的地震力,两者是对应的。也可以说,振型分解反应谱法,实际上是先得到节点位移,上面的地震力是顺便给出来,在得到了自由度上的位移后,不管用没用刚性隔板,都能从整体自由度的位移中获得构件节点的位移(用刚性隔板,位移对应的是刚性隔板的位移,通过刚性隔板的位移,可以反算构件的节点位移,如果是全楼弹性模型,地震位移对应的就直接是节点的位移了),有了构件节点的位移,结合构件的刚度,由{Fe}=[Ke]{Xe}即可直接得到构件的地震力,不需要通过地震力施加到质心再建一次刚度矩阵静力计算。其实本质上也是一致的,只是刚度矩阵这个因素已经在模态分析时候考虑进去了。 (5)这里也可以参考之前的博文《[Dynamics][动力学][抗震] 等效地震力与伪加速度反应谱(Equivalent Static Lateral Seismic Force and Pseudo-Acceleration Spectrum)》这里介绍了等效地震力的公式推导方法,而且是从位移的角度来推导的,不是直接用规范的公式。用位移的方式来推导,更能理解上面说的,在振型分解反应谱中,是先得到了自由度上的位移,既然是先得到自由度上的位移,那自然算构件的地震力就不需要集合到楼层力,再做静力分析计算了,直接用构件节点自由度上的位移即可算出该振型下构件的地震力,得到单个振型的地震力后,进一步进行振型组合即可获得最终的构件的地震力。 以上是个人的一些理解,如果有说错,请拍砖,欢迎给我指出。 相关博文 ( Related Topics) [01]. [Tool] SPECTR – A program for Response Spectra …

[下载][软件]GB-SPECT V2021: 中国规范反应谱生成程序 [Chinese Code’s Design Response Spectrum]

实干、实践、积累、思考、创新。 有网友问可否更新一下这个程序:[下载][软件][规范]GB-SPECT: Chinese Code’s Design Response Spectrum[中国规范反应谱生成程序],在原来程序基础上增加《建筑隔震设计标准》 GB/T 51408-2021 的反应谱。这是个很简单小程序,2013年写的,那时候刚学编程不久,主要是练习编程用。既然网友提到,趁着中秋假期,把程序翻出来更新一下,有需要的可以看看。 程序图标( Program Icon ) 程序介绍 ( Program Introduction): 该程序用于生成中国规范的设计反应谱。包括 GB 50011-2010 《建筑抗震设计规范》 和、GB 50011-2001《建筑抗震设计规范》 和 GB/T 51408-2021《建筑隔震设计标准》。程序可以输出反应谱曲线的文本文件和图片。 This program is used for …

[动力学][地震动] SPECTR与SeismoSignal反应谱计算有差异?

实干、实践、积累、思考、创新! 小伙伴用SPECTR (  [软件][工具] SPECTR (v1.0) – A program for Response Spectra Analysis [SPECTR地震波反应谱计算程序]  )及SeismoSignal做了个反应谱分析对比,发现结果有差异。 如下,对自带的chichi.data地震波进行加速度谱分析。发现差异主要是在0%阻尼比的加速度反应谱上,SPECTR算出来最大是1.77,而seismosignal是1.96,比SPECTR大。 仔细检查原因,发现引起这个差别的主要原因是,SPECTR默认采用的是逐步精确解析法(Piecewise Exact Method)(Nigam-jennings法),该方法不受积步长影响,是更加准确的,而seismosignal 默认采用的是newmark beta法,也只有newmark beta法。 seismosignal 默认采用的是newmark beta: 于是将SPECTR中的积分方法改为newmark beta法,同时参数取值与seismosignal保持一致,然后再重新计算。结果显示,此时SPECTR中的计算结果最大值也是1.96,与seismosignal一致。 因此可以断定这个问题是因为Newmark beta法的积分步长引起的,因为Newmark beta法的计算精度与积分步长有关,尤其是对于阻尼比较小,加速度响应较为敏感。在SPECTR中将Newmark …

[Dynamics][动力学][抗震] 等效地震力与伪加速度反应谱 (Equivalent Static Lateral Seismic Force and Pseudo-Acceleration Spectrum)

实干、实践、积累、思考、创新。 《建筑抗震设计规范》(GB50011-2010)中给出了采用振型分解反应谱法计算地震作用时的地震力计算公式:\({F_{ji}} = {\alpha _j}{\gamma _j}{X_{ji}}{G_i}\),其中\({\gamma _j} = \frac{{\sum\limits_{i = 1}^n {{X_{ji}}{G_i}} }}{{\sum\limits_{i = 1}^n {X_{ji}^2{G_i}} }}\),\({F_{ji}}\)为j振型i质点的水平地震作用标准值;\({\alpha _j}\)为相应于j振型自振周期的地震影响系数;\({X_{ji}}\)为j振型i质点的水平相对位移;\({\gamma _j}\)为振型的参与系数。以下根据结构动力学的相关理论,给出上述公式的一种推导。 1多自由度体系振型分解法 Mode Superposition Method 对于多质点体系,地震动力方程为: $${\left[ M \right]\left\{ {\ddot u} \right\} …

[下载][软件][规范] GD_SPECTRUM: 广东省标准《高层建筑混凝土结构设计规范》(GD DBJ 15-92-2020) 反应谱计算工具

实干、实践、积累、思考、创新。 20200608列的题目,之前测算广东规范的时候写的工具。现在广东高规出来了可以更新了。有需要的可以下载。 程序图标 ( Program Icon ) 程序介绍 ( Program Introduction) 程序下载 ( Program Download ) Download Program: GD_Spectrum (2021广东高规反应谱) ( PS. 程序免费下载 ,欢迎大家给我提意见 ,敬请尊重劳动成果 ) 相关博文( Related Topics) [01]. [Tool] SPECTR – A program for …

[软件][YJK][笔记] YJK中的自定义反应谱不对?

实干、实践、积累、思考、创新。 小伙伴测试YJK软件,发现YJK自定义反应谱有问题。 抗规的反应谱如下图所示,T=0时的影响系数为 αmax的0.45倍。 测算YJK的自定义反应谱如下: 可以发现,YJK中自定义反应谱 T=0时候的影响系数为 αmax的0.45倍,而不是0.40倍。 不知道内部的非自定义反应谱是不是也存在这个问题。 /////////////—————————————————————————————— PS。 这是之前内部测试广东高规版YJK的问题。YJK 3.0发布版没这个问题了。 微信公众号 ( Wechat Subscription) 欢迎关注 “结构之旅” 微信公众号

[地震][结构] 双向地震作用效应,【先振型组合,再方向组合】及【先方向组合再方向组合】的差异?(实际案例测算)

实干、实践、积累、思考、创新。 近日许多公众号分享了王亚勇大师提出的双向地震作用算法,许多群都进行了讨论。抱着好奇心,趁热打铁,这里也对这块内容做个测算研究。振型分解反应谱法,在计算双向地震作用时,涉及振型组合及方向组合。对于双向地震作用效应,我们是先振型组合,再方向组合?还是先方向组合,再振型组合?不同的组合顺序对结果有什么影响?以下通过算例做些探索。 1.1 测算目的 (1)了解振型分解反应谱法双向地震作用计算时,【先振型组合、再方向组合】与【先方向组合,再振型组合】的差异。先振型组合、再方向组合的结果大,还是先方向组合,再振型组合的结果大。 (2)测算王大师提出的双向地震作用计算方法与目前规范的双向地震作用计算方法的差异。这里贴一下王大师提出的算法的公式。原文见: 1.2 测算说明 (1)振型组合方式主要有SRSS方法、CQC方法和ABS法等。本文测算时,不管是【先振型组合、再方向组合】还是【先方向组合,再振型组合】,振型组合统一按CQC组合,这也是规范建议的方法。 (2)对于方向组合,考虑两种情况进行测算,分别是SRSS组合及ABS组合。对于SRSS及ABS组合,次方向的效应折减均取0.85。则,王大师建议的方法即,先方向组合,后振型组合,且方向组合采用ABS组合的方法。规范方法为,先振型租后,后方向组合,且方向组合采用SRSS组合的方法。 (3)测算的效应。由于王大师的ppt对新旧方法构件层次的内力响效应给出了较多例子。这里主要测算结构的宏观效应:楼层剪力及扭矩(累积扭矩)。结构的楼层剪力及累积扭矩值也是一种效应。 (4)测算的算法 假定,Sj(x),Sj(y)分别为X向及Y向单向地震作用下振型分解反应谱法获得的结构的地震效效应。对于本文的测算,指的是结构的楼层剪力或累积扭矩。 A.对于先振型组合,后方向组合,方向组合采用SRSS组合的验算过程: Step1:进行CQC振型组合,获得的两个方向地震作用振型组合后的效应S(x)及S(y) 其中, Step2: 进行SRSS方向组合,获得的X向为主方向及Y向为主方向的地震作用效应S(EX0.85EY)及S(EY0.85EX)。其中S(EX0.85EY) = sqrt( S(x)*S(x)+0.85*0.85*S(y)*S(y)) B.对于先方向组合,后振型组合,方向组合采用SRSS组合的验算过程: Step1:先进行SRSS方向组合,X方向为主方向的地震效应为Sjmx =sqrt( Sj(x)*Sj(x)+0.85*0.85*Sj(y)*Sj(y));Y方向为主方向的地震效应为Sjmy =sqrt(0.85*0.85* Sj(x)*Sj(x)+Sj(y)*Sj(y)) Step2:分别对Sjmx 及Sjmy 进行CQC振型组合,获得的X向为主方向及Y向为主方向的地震作用效应,同样命名为S(EX0.85EY)及S(EY0.85EX),其中, …

[地震工程][抗震][规范] 对抗规反应谱的速度段、位移段按理论规律调整,反应谱会变成什么样?

坚持实干、坚持一线、坚持积累、坚持思考,坚持创新。 抗规反应谱如下图, 其中: 假定0~Tg为加速度控制段,Tg~5Tg为速度段,5Tg以上为位移控制段,则速度段衰减指数取为了0.9,即T-0.9衰减而不是按T-1衰减,可见γ的公式。 位移段则是在5Tg处按斜率η1直线衰减,而不是按理论的T-2衰减。 假定按对抗规反应谱的速度段、位移段按理论规律调整,反应谱会变成什么样? 以7度0.1g,III类场地大震下的反应谱为例,调整前后的反应谱结果如下图所示。 由上图可见,考虑速度段及位移段分别按T的-1次方及-2次方修正后,加速度显著减小,尤其是5Tg后,加速度衰减很快,周期大于3s后,修正反应谱不到规范反应谱的一半。 微信公众号 ( Wechat Subscription) 欢迎关注 “结构之旅” 微信公众号

[软件][Tool][设计] YJK_ModePost: 盈建科模态数据分析工具

坚持实干、坚持实践、坚持积累、坚持思考,坚持创新。 程序图标 ( Program Icon ) 程序介绍 ( Program Introduction) YJK_ModePost: 盈建科模态数据分析工具。基于YJK的分析结果,可以校核CQC振型分解法的计算,查看各个振型的地震力,剪力,扭矩倾覆弯矩,可以选择指定的振型进行振型组合,查看振型组合对各类响应的影响。 程序界面 ( Program Interface ) 微信公众号 ( Wechat Subscription) 欢迎关注 “结构之旅” 微信公众号

[反应谱][动力学][抗震] 不同阻尼比反应谱曲线的相交现象 (The Curve Intersection Phenomenon of Response Spectra with Different Damping Ratios)

实干、实践、积累、思考、创新。 采用 SPECTR反应谱分析软件 (下载链接: http://www.jdcui.com/?p=1875 ) 对几个地震波进行位移谱的求解,结果如图1~图5所示,可以发现,随着阻尼比的增大,大部分地震波在各周期范围内反应谱值减小。但是部分地震波在某些周期范围内,阻尼比增大,但是位移谱值不一定减小。 在图形上表现为不同阻尼比的反应谱曲线在某些周期范围内出现相交的现象(见图1及图3)。同样,拟加速度反应谱也存在这个现象,因为拟加速度反应谱是由位移谱转换过来的。 初看这个现象感觉很奇怪,其实仔细想也十分正常。 以图1的反应谱为例,在周期2.5s左右出现明显的相交现象。把2.5s周期各阻尼比单自由度结构的位移时程绘制出来,见图6. 由图6可见,各阻尼比下,位移时程曲线的整体趋势比较一致,该凸的地方大家一起凸起来,该凹的地方一起凹下去,即趋势是一致,但是随着阻尼比的增大,出现绝对值最大值的时间不同了。 如图,阻尼比为20%的位移最大值出现在30s左右,其他阻尼比下位移绝对值最大值出现在40s左右。且阻尼比增大到20%后绝对值比其他阻尼比在40s左右出现的绝对值大。因此不同阻尼比的反应谱曲线就出现了交点。 因此,不同阻尼比的反应谱曲线可能出现交点。因为,反应谱纵坐标是绝对值。阻尼比发生改变,可能整个响应时程的整体趋势没改变,但是最大值出现的位置会不同,大小的增大或减小规律也不同,而反应谱记录的是绝对值。 所以,千万别闭着眼睛说,阻尼比越大,位移越小。瞎说!!! 😎 😀  图 1 图 2 图3 图 4 图 5 图 6 微信公众号 ( Wechat Subscription) 欢迎关注 “结构之旅” 微信公众号

[地震工程][科研][软件] IRSA 2020: Inelastic Response Spectra Analysis Program (弹塑性反应谱及单自由度非线性地震分析工具)

软件已更新,新版请移步:[软件][地震工程][科研][更新] IRSA 2022: Inelastic Response Spectra Analysis Program (弹塑性反应谱及单自由度非线性地震分析工具) 实干、实践、积累、思考、创新。 小伙伴让做的一个小工具,主要用于进行地震波弹塑性反应谱的计算及单自由度非线性分析计算。 程序图标 ( Program Icon ) 程序介绍 ( Program Introduction) IRAS:Inelastic Response Spectra Analysis Program (弹塑性反应谱及单自由度非线性地震分析工具)。 具体包含以下功能: (1)地震波基线修正(Baseline correction) (2)地震波积分 ( Integration) …

[抗震设计][结构规范] 如何有效考虑结构在地震作用下的“扭转影响”?!

坚持实干、坚持实践、坚持积累、坚持思考,坚持创新。 如何有效考虑结构地震作用下的“扭转影响”?? 这个问题是源于小伙伴的一个提问: 高规4.3.2第2条和抗规5.1.1第3条,均提到了对于及刚度及质量及其不规则的结构应该计入结构双向地震下的扭转影响,其他情况下计算单向地震地震扭转效应的影响。这里说的计入“扭转影响”或者考虑“扭转影响”是什么意思?我们平时设计电算的时候考虑了扭转了吧?平时单向地震作用计算都是用了考虑扭转了吧? 这个提问引申出我们平时设计计算是如何考虑结构地震作用下的“扭转影响”??如何有效考虑结构地震作用下的“扭转影响”?? 【规范条文】 这里先摘抄一下 规范条文,《高规》4.3.2条:质量与刚度分布不对称的结构,应计算双向水平地震作用下的扭转影响;其他情况,应计算单向水平地震作用下的扭转影响。   以下尝试回答一下这个问题,关于这个提问,包含多个方面,以目前设计用的振型分解反应谱法来说,结构的“扭转效应”计算是否得到有效考虑,应该包含以下4个方面: (1)模态分析 目前我们软件的分析均是基于空间有限元分析,首先单元刚度包含了扭转刚度,采用集中质量时候模态分析也包含了扭转分量或者直接非集中质量模态分析,自然考虑了结构的空间效应,包括扭转效应。如果模态分析是最原始的一层一个质量(一个动力自由度的情况), 那这个自然是无法考虑扭转影响了,后面的因素都白搭。 (2)振型参与系数(在地震作用标准计算的层次) 在采用集中楼层质量(一个楼层包含两个或三个平动质量及扭转惯量)的情况下,当考虑扭转效应时候,地震作用标准值计算采用的振型参数系数也是包含了扭转角。可见​规范公式。 (3)振型组合 目前振型组合的时候,我们也基本默认采用的是CQC的组合方法,很少再会采用SRSS方法了。而CQC组合方法也可以说是与考虑扭转相匹配的。就是因为振型中存在平动及扭转分量的耦联,所以才需要考虑扭转振型对平动振型的贡献,相反也需要考虑平动振型对扭转振型的贡献。即各个振型之间的相互耦联影响。(当然并不是说一定是考虑扭转耦联的模态分析才能使用CQC,后面有说。) (4)双向地震 一般认为,既然有扭转效应,那双向地震作用下应该更容易激发这个扭转。因此,对于容易扭转的结构,比如规范说的质量及刚度分布不对称的结构,要加上双向地震就是这个意思。而在振型分解反应谱法上,考虑双向地震,规范要求的就是加上个双向地震方向组合即可。是否考虑扭转与双向地震没有必然联系。 因此,振型分解反应谱法的情况下,要考虑扭转效应,首先模态分析要能考虑扭转效应(即,一层至少两个平动集中质量及一个扭转惯量或者采用非集中质量进行分析),如果模态分析都无法考虑空间扭转效应,那后面的参数白搭。在模态分析考虑扭转效应的情况下,振型参与系数计算考虑扭转影响,同时振型组合采用CQC,在此基础上,可以选择是否考虑双向地震。在模态分析能考虑空间扭转的情况下,如果振型参与系数不考虑扭转影响,或者振型组合不考虑耦联(比如考虑SRSS),那扭转也无法充分考虑。或者反过来,模态分析不考虑扭转影响,而振型组合采用CQC或者要求考虑双向地震作用,这样操作似乎有些多余,前段都无耦合分析,后端在耦合自然影响小(PS.当然这个只是一般情况,如果相邻平动振型的周期比很大的话,平动振型之间也存在耦联)。这也是为何,规范在讲振型分解反应谱法的时候,扭转耦联的振型分解反应谱总是与CQC组合及双向地震扯上(如《高规》4.3.10),而讲不考虑扭转耦联的振型分解反应谱法时仅提了SRSS组合,也并不强调双向地震作用计算的原因(如《高规》4.3.9)。 PS. 可以狭隘的理解按《高规》4.3.10 进行计算即考虑了扭转影响,按《高规》4.3.9计算即没有考虑扭影响。以上是基于振型分解反应谱法的情况下说的,当然,从计算角度,最真实反应结构扭转特性的方法当然是动力时程分析。 相关内容(Related Topics) [00] [YJK][结构设计] 关于各类“刚度比”软件电算结果的详尽复核总结 [01] [抗震设计][结构规范] 规定水平力、倾覆弯矩、振型组合等电算结果的复核总结 [02] [抗震设计][结构规范] 如何有效考虑结构在地震作用下的“扭转影响”?! [03] [抗震][结构设计] …

[抗震][结构设计] 关于“扭转效应明显”与“两个水平方向振型参与系数”

实干、实践、积累、思考、创新。 源于小伙伴问:《抗规》5.2.5楼层最小地震剪力系数表时候给出了个结构“扭转效应明显”时的取值,如何判断扭转效应明显抗规是通过振型参与系数来判断,这个如何理解? 这里摘抄一下抗规附录5.2.5的说明:“扭转效应明显与否一般可由考虑耦联的振型分解反应谱法分析结果判断,例如前三个振型中,二个水平方向的振型参与系数为同一个量级,即存在明显的扭转效应。对于扭转效应明显或基本周期小于3.5s的结构,剪力系数取0.2αmax,保证足够的抗震安全度。对于存在竖向不规则的结构,突变部位为薄弱层,尚应按本规范3.4.4条的规定,再乘以不小于1.15的系数”。 初一看这句 “例如前三个振型中,二个水平方向的振型参与系数为同一个量级,即存在明显的扭转效应。”似乎很合理,但仔细一想适合也不合理,如下说明。 两个水平方向振型系数相当,就是扭转明显,这个说法,可以大致从《抗规》公式 5.2.3-2 或 5.2.3~3来看,以公式 5.2.3-2为例,即假定结构受X向地震作用,此时振型参与质量系数主要与Xji(振型X方向的位移分量)有关,假想一个平面为正方形的无扭转的结构,第一振型为X向平动,第二振型为Y向平动,那么计算出来,第一整形的阵型参与系数就会很大,而第二振型的振型参与系数就是0(因为结构无扭转,第二振型沿X向没有分量)。可以看见,对于这个例子,的确可以说明,如果结构不存在扭转,则平动系数的确会相差很大。这是这个提法合理的地方。 但是这个提法也有不合理地方,依然以上面的例子为例,实际建模分析的时候,把这个结构扭转个45度,放进去模型里面算,那么第一周期与第二周期的振型参与系数应该相等,也就是两个水平方向的振型参与系数为同一个量级,按规范判断,结构应该是存在明显的扭转效应,但是实际上还是原来的无扭转的结构。所以,抗规这个说法实际上是不对的,因为振型参与系数与结构的方位有关。 实际上,抗规提法,应该是沿结构主轴方向投影后的一个说法,比如后面转45度的例子,结构主轴应该是沿45度及135度,按这个方向来看振型参与系数就合理了。但这也很难操作,对于复杂结构,结构主轴可能本身就很难判断。 PS. 以上纯属讨论,《高规》是直接用位移比是否超过1.2来判断是结构否扭转效应明显。实际工程,一般是看位移比或者说周期比,如果第一周期或者第二周期不是扭转,一般也不会判定为扭转效应明显结构。 相关内容(Related Topics) [00] [YJK][结构设计] 关于各类“刚度比”软件电算结果的详尽复核总结 [01] [抗震设计][结构规范] 规定水平力、倾覆弯矩、振型组合等电算结果的复核总结 [02] [抗震设计][结构规范] 如何有效考虑结构在地震作用下的“扭转影响”?! [03] [抗震][结构设计] 规范的各种刚度比”Ratx,Ratx1,Ratx2,RJX1,RJX3″及嵌固层 [04] [抗震][结构设计] 关于“扭转效应明显”与“两个水平方向振型参与系数” [05] …

[工程][项目][地震动][软件] EPA Scaling: EPA-based Adjustment Tool of Seismic Ground Motion Record[基于EPA的地震动记录调整工具]

实干、实践、积累、思考、创新。 程序图标 ( Program Icon ) 程序介绍 ( Program Introduction) EPA Scaling: EPA-based Adjustment Tool of Seismic Ground Motion Record [基于EPA的地震动记录调整工具] 基于EPA的地震动记录调整工具。根据论文《基于EPA的地震动记录调整方法及应用实例》—常磊,廖耘,王亚勇 编制。项目用到就试试看吧。 可以导入多组地震波; 可以新建反应谱,反应剖也可以自定义; 可以自定义反应谱的平滑参数; 可以考虑谱平均值的二次修正; 可以设置反应谱计算的点数; 可以图形方式显示基于PGA、EPA修正的反应谱的结果; 图形结果可以快速输出EXCEL图表。 程序图例 …