[地震工程][抗震][规范] 对抗规反应谱的速度段、加速度按理论规律调整,反应谱会变成什么样?

坚持实干、坚持一线、坚持积累、坚持思考,坚持创新。 随后更新……     微信公众号 ( Wechat Subscription) 欢迎关注 “结构之旅” 微信公众号

[抗震][结构设计][规范] 非抗震设计情况下混凝土柱的“轴压比”可达多大?

坚持实干、坚持一线、坚持积累、坚持思考,坚持创新。 题目可能好像提的不是太专业,因为通常轴压比说的是抗震的情况下的概念,所以这里加上了双引号。不过,不要在意这些细节。起因是,小伙伴在群里讨论轴压比的相关问题:混凝土柱的轴压比是不是不能大于1.0,非抗震情况下是不是不能比1.0大太多? 先引出轴压比的公式,对于普通混凝土柱,设计轴压比的定义为 N/(fc*A)。N为设计轴力(抗规为考虑地震组合下的轴力值),fc为混凝土轴心抗压强度,A为混凝土截面面积。 这里面有两个问题: (1)轴压比是否大于1.0? (2)轴压比如果能大于1.0,能大多少? 在混凝土结构设计中,构件的轴压比,是抗震设计时提出的概念。在地震作用下,构件存在往复变形,限制竖向RC构件的轴压比不过大主要是为了提高构件在往复荷载作用下的延性。因为,在相同构件配筋条件下,轴压比越大,构件越倾向于小偏心受压破坏(脆性),轴压比越小,越倾向于大偏心受压破坏(延性好)。在非抗震设计情况下,因为构件不存在地震情况下的往复荷载作用,因此对延性无直接控制要求,侧重强调构件的承载力,规范对“轴压比”无直接控制。 限制轴压比,主要是控制构件延性。从轴压比的公式也可以看出,轴压比等于1.0也不是构件破坏的临界条件,因为公式没有考虑钢筋的作用,1.0仅表示压力全为混凝土承担,素混凝土情况下,构件破坏。 因此,问题1的回答是: 轴压比是可以大于1.0的,即便是抗震设计情况下,也可以大于1.0。抗震规范规定,当对柱子采取了可靠的提高延性的加强措施后(如附加芯柱、对柱的箍筋采用螺旋箍加密布置等等),可以提高柱的轴压比限值,最大不大于1.05。 对于问题2,抗震设计时,规范要求不大于1.05,对于非抗震设计的柱子,虽然不直接控制柱的轴压比,但柱的要满足承载力要求,当柱达到极限受压承载力时,也有对应的“轴压比”,此时的“轴压比”可以有多大? 对于常规柱,当柱不受弯仅受压时,即轴心受压时,柱能承受的轴压力最大,轴压比也最大(从PM曲线可知)。 为此,以轴心受压柱为例,通过求解轴心受压柱的承载力,即可反算出非抗震情况下,柱的轴压比。 假定柱子截面尺寸为 500*500,混凝土强度等级为C35,钢筋采用HRB400,层高为3300的底层柱,则依据《混凝土结构设计规范》6.2.15节,在假定柱配筋率的情况下,可反算柱的轴心抗压承载力N,由N可计算对应的“轴压比”。具体计算过程如下: 由以上分析可见:随着配筋率的增加,轴压比线性增加,对于混凝土等级C35,常规配筋率为2~5%的柱,最大轴压比为1.270-1.825之间,最大轴压比均大于1.0,最大为1.825。 采用同样的方式,我们可以获得C35~C60的柱子随着配筋率的变化最大轴压比的变化,如下图所示: 由上图可见,相同配筋率情况下,混凝土等级越大,最大轴压比越小。 将不同混凝土等级5%配筋率情况下柱的最大轴压比数据进行整理,并绘图,结果如下: 由此可见,非抗震情况下,C60柱最大轴压比为1.444,C35柱最大轴压比1.825。由于5%配筋率是一个较大的配筋率,因此,上述5%配筋率反算的柱的最大轴压比,可以认为是一个较大值。 微信公众号 ( Wechat Subscription) 欢迎关注 “结构之旅” 微信公众号

[Tool][软件][Update] PPPSP V2020: Pushover Performance Point Solution Program [Pushover 分析性能点求解程序][Based on FEMA 440]

坚持实干、坚持实践、坚持积累、坚持思考,坚持创新。 7月拖到现在11月,终于可以更新了...... 程序图标 ( Program Icon )        程序介绍 ( Program Introduction) 基于FEMA 440等效线性化法 Pushover分析方法 的性能点求解程序。( A program for the Solution of Pushover Performance Point based on FEMA 440 Equivalent …

[选波][地震波][科研] 桥梁结构地震波选取案例(GMS选波系统-选波应用案例20)

坚持实干、坚持一线、坚持积累、坚持思考,坚持创新。 小伙伴让采用GMS选波系统( http://www.jdcui.com/?page_id=6118 )做的一个桥梁选波案例。 结构主要周期 1.0588 0.8991 0.8924 0.6024 桥梁结构规范的反应谱 桥梁结构选波的一些规范规定 未作地震安全性评价的桥址,可根据本细则设计加速度反应谱,合成与其兼容的设计加速度时程;也可选用与设定地震震级、距离大体相近的实际地震动加速度记录,通过时域方法调整,使其反应谱与本细则设计加速度反应谱兼容。 为考虑地震动的随机性,设计加速度时程不得少于三组,且应保证任意两组间同方向时程由式 (5.3.2) 定义的相关系数ρ的绝对值小于0.1。 GMS选波结果   相关案例 ( Related Examples) [01]. [工程][选波][地震波] 某超高层选波案例(GMS选波系统-选波应用案例1) [02]. [工程][选波][地震波] 某框筒高层建筑结构选波案例(GMS选波系统-选波应用案例2) [03]. [工程][选波][地震波] 某多层框剪建筑结构(短周期)选波案例(GMS选波系统-选波应用案例3) [04]. [工程][选波][地震波] 某钢筋混凝土框架-核心筒高层建筑结构选波案例(GMS选波系统-选波应用案例4) [05]. [工程][选波][地震波] 某大底盘-多塔-高位连体高层建筑结构选波案例(GMS选波系统-选波应用案例5) …

[抗震][设计] 关于地下室的抗震等级如何取?

坚持实干、坚持实践、坚持积累、坚持思考,坚持创新。 《高规》JGJ3 – 2010  3.9.5: 抗震设计的高层建筑,当地下室顶层作为上部结构的嵌固端时,地下室一层相关范围的抗震等级应按上部结构采用,地下一层相关范围的抗震等级应按上部结构采用,地下一层以下抗震构造措施的抗震等级可逐层降低一级,但不应低于四级;地下室中超出上不主楼相关范围且无上部结构的部分,其抗震等级可根据具体情况采用三级或四级。   广东《高规》DBJ 15-92-2013 3.9.5: 抗震设计的高层建筑,地下一层相关范围的抗震等级应按上部结构采用,地下一层以下的抗震等级可逐层降低一级,但是不应低于四级; 地下室中超出上部主楼范围且无上部结构的部分,其抗震等级可根据具体情况采用三级或四级。 其中广东高规不分嵌固层是否设置在地下室顶板,地下室二层以下抗震等级一律可逐层折减。规范条文的说明是,高层建筑设计地下室对结构抗震有利,部分或大部分的地震水平剪力由地下室外墙的土压力平衡,地下室中的结构竖向构件(柱,剪力墙)承担的水平剪力大为减小,这一事实与结构计算嵌固端设与地下室顶板或基础底板无关。因此,地下二层及以下的结构抗震等级可适当放松。“相关范围”一般指主楼周边外延1~2跨的地下室范围。 相关内容(Related Topics) [00] [YJK][结构设计] 关于各类“刚度比”软件电算结果的详尽复核总结 [01] [抗震设计][结构规范] 规定水平力、倾覆弯矩、振型组合等电算结果的复核总结 [02] [抗震设计][结构规范] 如何有效考虑结构在地震作用下的“扭转影响”?! [03] [抗震][结构设计] 规范的各种刚度比”Ratx,Ratx1,Ratx2,RJX1,RJX3″及嵌固层 [04] [抗震][结构设计] 关于“扭转效应明显”与“两个水平方向振型参与系数” [05] [结构设计][规范] …

[结构设计][规范] 关于“扭转耦联”、“偶然偏心”、“双向地震作用”的总结

坚持实干、坚持实践、坚持积累、坚持思考,坚持创新。 来自小伙伴 邹超(Lucas) 的分享。 1、扭转耦联: 1.1、耦联的定义: 在抗震中,“耦联”就是作用在给定侧移的某一质点上的弹性回复力不仅取决于这一质点上的侧移,而且还取决于其他各质点的位移,因而存在着刚度耦联,这样会给微分方程组的求解带来不少困难。所以,应用振型分解和振型正交性原理来解耦,使方程组求解大大简化。 1.2、如何考虑扭转耦联: 《抗规5.2.2条文说明》当结构体系的振型密集、两个阵型的周期接近时,阵型之间的耦联明显。当相邻振型周期比为0.85时,尚可采用SRSS法(5.2.2-3)进行振型组合计算地震效应;当相邻周期比大于0.9时,只能用CQC法(5.2.3-5)进行振型组合计算地震效应。 1.3、何时考虑扭转耦联: 《抗规3.4.4第1条》扭转不规则时,应计入扭转影响。(其中扭转不规则定义位于《抗规表3.4.3第1条》位移比或层间位移比大于1.2) 《抗规3.4.3》扭转位移比的计算采用“规定水平力”作用下的计算结果,而非各振型算得的位移进行CQC组合的结果。“规定水平力”:振型组合(CQC组合)后的楼层地震剪力换算的水平作用力并考虑偶然偏心。水平力的换算原则:每一楼面处的水平作用力,取该楼面上、下两楼层地震剪力差的绝对值。 《高规3.4.5条文说明》、《抗规3.4.4条文说明》结构楼层位移和层间位移控制值验算时,仍采用CQC的效应组合。 《抗规5.2.3条文说明第3条》第一振型周期为Tϴ、Tϴ>0.75Tx1或0.75Ty1、0.75Tϴ>Tx2或Ty2,均应考虑地震扭转效应。《高规.3.4.5条》Tt/T1不大于0.85(超A级高度或复杂高层不大于0.85)。(这些指标设置的目的均为保证结构的扭转刚度不宜过小) 《抗规5.2.5条文说明》扭转效应明显与否一般可由考虑耦联的振型分解反映谱法分析结果判断,例如前三个振型中,二个水平方向的振型参与系数为同一个量级,既存在明显的扭转效应。 《高规4.3.12条文说明》扭转效应明显的结构,是指楼层最大水平位移(或层间位移)大于楼层平均水平位移(或层间位移)1.2倍的结构。 《抗规5.1.1第3条》与《高规4.3.2第2条》意为均应考虑扭转影响。   2、偶然偏心: 2.1、偶然偏心的定义: 《高规4.3.3条文说明》“本条规定主要是结构地震动力反应过程中可能由于地面扭转运动、结构实际的刚度和质量分布相对于计算假定值的偏差,以及在弹塑性反应过程中各抗侧力结构刚度退化程度不同等原因引起的扭转反应增大;特别是目前对地面运动扭转分量的强震实测记录很少,地震作用计算中还不能考虑输入地面运动扭转分量。采用附加偶然偏心作用计算是一种实用方法。” 2.2、偶然偏心的计算方法: 偶然偏心的考虑是直接在计算模型中使合力作用点与原结构的质心偏移5%。(在规范地震作用效应的公式中无法体现) 2.3、何时考虑偶然偏心: 《高规4.3.3》计算单向地震作用时应考虑偶然偏心的影响。 《高规4.3.3条文说明》采用底部剪力法计算地震作用时,也应考虑偶然偏心的不利影响。 《高规4.3.3条文说明》当计算双向地震作用时,可不考虑偶然偏心的影响,但应与单向地震作用考虑偶然偏心的计算结果进行比较,取不利的情况进行设计。——偶然偏心与双向地震作用的关系 《抗规5.2.3条文说明第3条》如果考虑扭转影响的地震作用效应小于考虑偶然偏心引起的地震效应时,应取后者以策安全。但现阶段,偶然偏心与扭转二者不需要同时参与计算(现在的电算都是采用CQC法进行地震力计算,在计算考虑偶偏的地震力时,采用的单向地震力已经考虑了扭转的影响)。——偶然偏心与扭转效应的关系   3、双向地震作用: …

[结构设计][规范] 结构整体倾覆力矩及抗倾覆力矩的计算——以YJK为例

坚持实干、坚持实践、坚持积累、坚持思考,坚持创新。 来自小伙伴 邹超(Lucas) 的分享,关于“倾覆力矩”与“抗倾覆力矩”软件电算结果的详尽复核总结。 倾覆力矩计算 M0v=V0(2H/3+C)=G*e0 抗倾覆力矩计算 MR=GB/2 注意: (1)为何风与震的抗倾覆力矩不同? 计算重力G时,对于地震作用下的抗倾覆力矩计算,活荷载取有地震作用组合的重力荷载代表值组合系数0.5(即D+0.5L);对于风荷载作用下的抗倾覆力矩计算,活荷载取组合值系数0.7(即D+0.7L)。故两种作用下软件计算所得抗倾覆力矩有所不同。 (2)每一层质心位置不同,B如何取值? 对于B/2的计算,YJK在计算时,考虑了上部结构质心相对基底偏心的影响,实际质心为各层质心加权平均所得。 算例 1(说明注意 1) Mrx风=(2409+0.7×960)x10x40/2=616200(风X向) Mry风=(2409+0.7×960)x10x16/2=246480(风Y向) Mrx震=(2409+0.5×960)x10x40/2=577800(震X向) Mry震=(2409+0.5×960)x10x16/2=231120(震Y向) 其中 算例2(说明注意2) 相关内容(Related Topics) [00] [YJK][结构设计] 关于各类“刚度比”软件电算结果的详尽复核总结 [01] [抗震设计][结构规范] 规定水平力、倾覆弯矩、振型组合等电算结果的复核总结 [02] [抗震设计][结构规范] …

[抗震][结构设计] 关于“扭转效应明显”与“两个水平方向振型参与系数”

坚持实干、坚持实践、坚持积累、坚持思考,坚持创新。 源于小伙伴问:《抗规》5.2.5楼层最小地震剪力系数表时候给出了个结构“扭转效应明显”时的取值,如何判断扭转效应明显抗规是通过振型参与系数来判断,这个如何理解? 这里摘抄一下抗规附录5.2.5的说明:“扭转效应明显与否一般可由考虑耦联的振型分解反应谱法分析结果判断,例如前三个振型中,二个水平方向的振型参与系数为同一个量级,即存在明显的扭转效应。对于扭转效应明显或基本周期小于3.5s的结构,剪力系数取0.2αmax,保证足够的抗震安全度。对于存在竖向不规则的结构,突变部位为薄弱层,尚应按本规范3.4.4条的规定,再乘以不小于1.15的系数”。 初一看这句 “例如前三个振型中,二个水平方向的振型参与系数为同一个量级,即存在明显的扭转效应。”似乎很合理,但仔细一想适合也不合理,如下说明。 两个水平方向振型系数相当,就是扭转明显,这个说法,可以大致从《抗规》公式 5.2.3-2 或 5.2.3~3来看,以公式 5.2.3-2为例,即假定结构受X向地震作用,此时振型参与质量系数主要与Xji(振型X方向的位移分量)有关,假想一个平面为正方形的无扭转的结构,第一振型为X向平动,第二振型为Y向平动,那么计算出来,第一整形的阵型参与系数就会很大,而第二振型的振型参与系数就是0(因为结构无扭转,第二振型沿X向没有分量)。可以看见,对于这个例子,的确可以说明,如果结构不存在扭转,则平动系数的确会相差很大。这是这个提法合理的地方。 但是这个提法也有不合理地方,依然以上面的例子为例,实际建模分析的时候,把这个结构扭转个45度,放进去模型里面算,那么第一周期与第二周期的振型参与系数应该相等,也就是两个水平方向的振型参与系数为同一个量级,按规范判断,结构应该是存在明显的扭转效应,但是实际上还是原来的无扭转的结构。所以,抗规这个说法实际上是不对的,因为振型参与系数与结构的方位有关。 实际上,抗规提法,应该是沿结构主轴方向投影后的一个说法,比如后面转45度的例子,结构主轴应该是沿45度及135度,按这个方向来看振型参与系数就合理了。但这也很难操作,对于复杂结构,结构主轴可能本身就很难判断。 PS. 以上纯属讨论,《高规》是直接用位移比是否超过1.2来判断是结构否扭转效应明显。实际工程,一般是看位移比或者说周期比,如果第一周期或者第二周期不是扭转,一般也不会判定为扭转效应明显结构。 相关内容(Related Topics) [00] [YJK][结构设计] 关于各类“刚度比”软件电算结果的详尽复核总结 [01] [抗震设计][结构规范] 规定水平力、倾覆弯矩、振型组合等电算结果的复核总结 [02] [抗震设计][结构规范] 如何有效考虑结构在地震作用下的“扭转影响”?! [03] [抗震][结构设计] 规范的各种刚度比”Ratx,Ratx1,Ratx2,RJX1,RJX3″及嵌固层 [04] [抗震][结构设计] 关于“扭转效应明显”与“两个水平方向振型参与系数” [05] …

[工程][项目][地震动][软件] EPA Scaling: EPA-based Adjustment Tool of Seismic Ground Motion Record[基于EPA的地震动记录调整工具]

坚持实干、坚持一线、坚持积累、坚持思考,坚持创新。 程序图标 ( Program Icon ) 程序介绍 ( Program Introduction) EPA Scaling: EPA-based Adjustment Tool of Seismic Ground Motion Record [基于EPA的地震动记录调整工具] 基于EPA的地震动记录调整工具。根据论文《基于EPA的地震动记录调整方法及应用实例》—常磊,廖耘,王亚勇 编制。项目用到就试试看吧。 程序图例 ( Program Galleries) 微信公众号 ( Wechat Subscription) 欢迎关注 “结构之旅” 微信公众号

[工程][选波][地震波] 某框筒超高层结构选波案例 [第1第2周期大于6s](GMS选波系统-选波应用案例14)

坚持实干、坚持一线、坚持积累、坚持思考,坚持创新。 随后更新…       相关案例 ( Related Examples) [01]. [工程][选波][地震波] 某超高层选波案例(GMS选波系统-选波应用案例1) [02]. [工程][选波][地震波] 某框筒高层建筑结构选波案例(GMS选波系统-选波应用案例2) [03]. [工程][选波][地震波] 某多层框剪建筑结构(短周期)选波案例(GMS选波系统-选波应用案例3) [04]. [工程][选波][地震波] 某钢筋混凝土框架-核心筒高层建筑结构选波案例(GMS选波系统-选波应用案例4) [05]. [工程][选波][地震波] 某大底盘-多塔-高位连体高层建筑结构选波案例(GMS选波系统-选波应用案例5) [06]. [工程][选波][地震波] 某8度区大底盘-多塔高层建筑结构选波案例(GMS选波系统-选波应用案例6) [07]. [工程][选波][地震波] 某7度区框架核心结构选波案例(GMS选波系统-选波应用案例7) [08]. [工程][选波][地震波] 某8度区框架-剪力墙结构选波案例(GMS选波系统-选波应用案例8) [09]. [工程][选波][地震波] 某7度区框架核心结构选波案例(GMS选波系统-选波应用案例9) [10]. [工程][选波][地震波] 某7度区大底盘-多塔-高位连体高层建筑结构选波案例(GMS选波系统-选波应用案例10) [11]. …

[编程][结构设计][抗震设计] 二道防线0.2V0调整系数计算工具

坚持实干、坚持一线、坚持积累、坚持思考,坚持创新。 随后更新…         微信公众号 ( Wechat Subscription) 欢迎关注 “结构之旅” 微信公众号

[结构设计][盈建科] 重力二阶效应(P-Delta效应)对结构的影响(实际算例对比)

坚持实干、积累、思考,创新。 实际模型,算例为某7度区超高层(500m),进行考虑与不考虑P-DELTA效应的结构计算对比,简要对比结果如下。 周期 [Period] 从周期结果看,考虑P-DETA后,结构刚度变弱,周期变长。这个可直接理解。 地震剪力(剪重比调整前) [Seismic Shear Force before adjustment] 如下图,考虑P-DATA前后,地震剪力差异没有太大。造成这种现象的主要原因是因为,结构基本周期大于6s,而6s后规范反应谱按拉平的方式处理,因此地震力影响不大。实际考虑P-DELTA效应后,结构周期变长,一般情况,地震力会减小。 地震剪力(剪重比调整后) [Seismic Shear Force after adjustment] 如下图,考虑P-DATA前后,地震剪力差异没有太大。原因已在前面表述。 地震位移角 [Story drift under seismic load] 对于该结构,由于考虑P-DELTA前后地震力变化不大,而考虑P-DELTA后,刚度减弱,因此,在相同的地震力作用下,考虑P-DETA效应的地震位移角更大。 风荷载 [Wind Load] 如下图,考虑P-DATA前后,风剪力相差不大。 …

[结构设计][超限][工具] “高规”结构抗震性能目标查询工具

20180117写的题目,现在填坑。 坚持实干、坚持一线、坚持积累、坚持思考,坚持创新。 程序图标 ( Program Icon ) 程序介绍 ( Program Introduction) 20180117写的题目,现在填坑。写个小软件,放松一下。按高规的性能设计章节查询不同性能水准的构件性能目标。 程序界面 ( Program Interface ) 微信公众号 ( Wechat Subscription) 欢迎关注 “结构之旅” 微信公众号

[结构设计] 外框剪力分担比的作用

坚持实干、坚持一线、坚持积累、坚持思考,坚持创新。 从规范而言,主要有以下两点: (1)判断外框刚度是否满足二道防线。虽然不一定什么结构体系都那么合理适用,但最初的初衷就是想确保框架不至于太弱,在地震下能够有二道防线。 (2)用于进行0.2V0调整。进行框-剪结构的抗震设计。主要是抗震设计里面的的概念。 注释 ( Comments )   ( 如果您发现有错误,欢迎批评指正。邮箱:jidong_cui@163.com . 如果您喜欢这篇博文,请在上面给我 点个赞 吧!         ( If you found any mistakes in the post, please let me know. Email : jidong_cui@163.com. If you like this posts, please give me …

[结构设计][概念] 剪力墙开洞要注意

坚持实干、坚持实践、坚持积累、坚持思考,坚持创新。 不合理的开洞模式: 相对合理的开动方式: PS: (1)通常情况,连梁是耗能构件,而且在大震作用下也往往先坏。 (2)剪力墙是重要的抗侧力构件及承重构件。必须注意注重剪力墙的竖向传利机制及路径。尽量别用连梁来传递竖向力。更别用连梁来转换大部分剪力墙的竖向压力。 (3)然后你就会理解规范说的。剪力墙洞口的布置,会明显影响剪力墙的力学性能。规则开动,洞口成列、成排布置,能形成明确的墙肢和连梁,应力分布较为规则。 (4)若无法避免错洞,要特别分析薄弱部位,并注意薄弱部位的加强。 注释 ( Comments )   ( 如果您发现有错误,欢迎批评指正。邮箱:jidong_cui@163.com . 如果您喜欢这篇博文,请在上面给我 点个赞 吧!         ( If you found any mistakes in the post, please let me know. Email : jidong_cui@163.com. If you like this …

[结构设计][地震作用][规范]振型分解反应谱法的一些概念总结 (Basic Concepts of Response Spectra Method)

坚持实干、坚持实践、坚持积累、坚持思考,坚持创新。 温故而知新,理论指导实践,实践检验理论。 (1)振型型分解法,首先是进行模态分析,有多少个动力自由度,理论上就有多少个模态,相应的有多少个周期(频率),及振型。 (2)振型向量关于质量矩阵及刚度矩阵正交。因此,无阻尼运动方程可以实现解耦,将耦合的运动方程,解耦为多个广义单自由度运动方程。 (3)如果阻尼矩阵也满足于振型的正交性条件(如,瑞丽阻尼),则有阻尼结构的运动方程也可以解耦,解耦为多个有阻尼的广义单自由度运动方程。 (4)解耦后的单自由度方程的频率就是振型的频率。即,看是错综复杂的多自由度的震动过程其实是多个规则的不同频率的三角函数组成的。(PS. 自然界就是这么神奇,就像傅里叶变换一样,看是动态的,实则背后是静态的,是死的,太可怕了,无规律的东西,从频率来看,背后却是规律的… 这里不扯这个。 (5)振型无绝对大小,只是表示结构按某个具体频率振动时,各个动力自由度的振幅的相对大小。 (6)利用振型将多自由度方程解耦后分,若对解耦的单自由度方程进行时程分析,该方法常称为模态时成分析方法。若对解耦的单自由度方程进行反应谱分析,则称为振型分解反应谱法,这是目前结构设计规范的主流设计方法。 (7)振型分解法依靠振型对运动方程进行解耦,而振型是与弹性刚度及质量相关的,因此,机遇固定的振型对运动方程解耦,也意味着结构必须是弹性,该方法仅适用于弹性分析。 (8)振型分解反应谱法,由于引入了反应谱,使得结构工程师主要关注最大值,查看结果简便了,但是简便也带来了问题,因为反应谱丢掉了时程结果的许多信息。 (9)由于反应谱法只能获得最大值,因此振型分解反应谱涉及多个层次的组合问题。首先,各振型的极大值怎么叠加组合为最后的响应,该部分组合是所谓的“振型组合”,如常见的ABS组合方式,SRSS组合方式,及CQC组合方式等。另外,还有一个组合问题是多个方向的地震响应的组合问题,由于不同方向的地震动严格来说是不同的,所谓的不同,是说具体的时程肯定是不同的,响应的反应谱也是不同的,不同就会导致不同步,不同步那不同方向的结果也需要组合。直接时程分析法考虑多个方向的地震同时作用,直接就把多个方向的地震波加上同时进行分析即可,无非是动力方程的右边项将不同方向的地震波叠加即可,而振型分解反应谱法不行,不同方向的地震响应结果,也需要组合,先进行单个方向的效应分析,然后再把这些单个方向的极大值效应进行组合,该组合即所谓的“方向组合”。 (10)由于振型分解反应谱法的概念是,先计算单个振型的某个效应(如剪力,弯矩等)的最大值(正值),然后将单个振型的结果按一定的方法叠加起来,因此,振型分解再用反应谱分析再叠加的过程,丢掉了方向性。或者说,这些响应量,如剪力,只有一个统一的方向。结果都只有一个方向,那使用起来不方便,不直观,因此,在应用的时候,为了给出方向,又有研究者给出一些建议方法,判定响应方向,比如按主振型的方向,来确定响应的方向。但该方法也仅是对于一些简单结构,给出一个响应的参考方向,对于复杂结构,依然存在问题一些问题。比如,多塔连体结构,由于振型分解反应谱法,给出的不同塔楼的力都是同一个方向的,那振型分解反应谱可能就丢失了塔楼的反向运动,有可能存在隐患。因此,振型分解反应谱法虽然简便好用,但是也有不足,这个时候就需要补充弹性时程分析。这就是为何规范要求对复杂结构进行补充的弹性时程分析的一个重要原因。这个振型分解反应谱法的方向问题,还会引起其他相关的问题,具体工程的时候具体思考和分析。 (11)振型分解反应谱法的振型组合是非线性的,因此会出现诸如振型分解反应谱法的楼层剪力与楼层地震力(外力)不平衡的问题。因为,楼层剪力是多个振型的楼层剪力组合而得到的,单个振型下的楼层剪力是由于楼层地震力根据平衡求解的,满足平衡关系,但是经过振型组合后(如,SRSS,CQC),又不不平衡关系了,因为这些振型组合的方法都不是线性的。因为不能是线性的,为何?简单说,以为各个振型的极大值不是同时出现的。 (12)振型分解反应谱法,实际上是一个等效静力分析,为何这么说,因为运动方程经过解耦,再套上反应谱法,对于每一个振型,相当于在各个动力自由度上加上了一个等效惯性力,然后用这个惯性力进行静力分析,得到该振型下相关的响应量,如构件剪力,弯矩,轴力等,然后再进行振型组合。因此,在有限元求解上,其实是一个静力的求解分析过程。 (13)说到振型分解反应谱法,《高规》及《抗规》,又要扯到“扭转耦联”这个四个字,规范也给出了,两个方法,其中第一个是 a.不考虑扭转耦联的振型分解反应谱法,及b.考虑扭转耦联的振型分解反应谱法。其中,不考虑扭转耦联的振型分解反应谱法采用的是 SRSS组合,仅考虑一个水平方向的振型,即仅进行一个方向的振型分析,不考虑另一个方向质量或扭转惯量的耦合作用。考虑扭转耦联的振型分解反应谱法采用的是 CQC组合(CQC,组合过程中各个振型也是耦联的,需要通过两两振型的周期比及阻尼比参数来计算),分析过程中每一个楼层考虑水平方向及扭转方向3个自由度,振型也包含三个方向的分量。 (14)关于“扭转耦联”,必须说的是,由于一般结果,质量中心及刚度中心很难完全重合,因此,结构的扭转振动总是存在的,因此,进行“考虑扭转耦联的振型分解反应谱法”是相对更精确的。 (15)另外,进行“考虑扭转耦联的振型分解反应谱法”分析与是否考虑多向地震作用或者考虑哪个方向地震作用无关。不要将扭转耦联等同于双向或者三向,不考虑耦联则等同于单向地震。考虑扭转耦联,本质上说的是模态分析的时候,需要考虑平动与扭转自由度的耦联,模态需要能反应扭转的成分。是否考虑多向地震作用,只是振型分解后,方向组合的问题。是否考虑不同角度的地震只是涉及到振型参与系数的计算方法。振型分析,是否考虑扭转耦联或者不考虑扭转耦联,仅仅是结构固有特性的反映。 PS. 最后几点对SRSS和CQC及“扭转耦联”的表述还不是太清楚,借筑信达 李楚舒李总 的话补充一下:完全对称(没有扭转)的SRSS和CQC的结果也有较大区别,SRSS会在地震方向低估作用,而在另一个方向高估(见Wilson一书)。所以用CQC与结构是否扭转没关系,而是振型间存在耦合这一客观存在,所以必须用CQC。所以抗规的“扭转耦联”不对,应该是“振型耦联”——这误导了很多工程师. 相关博文( Related Posts ) [1] …

[结构设计][规范][超限] 墙肢中震拉应力验算(2ftk验算)

坚持实干、坚持实践、坚持积累、坚持思考,坚持创新。 PS。规范条文学习,笔记。 关于墙肢的拉应力验算,来源于《超限高层建筑工程抗震设防专项审查技术要点》20150521 第十二条  关于结构抗震性能目标: (四) 确定所需的延性构造等级。中震时出现小偏心受拉的混凝土构件应采用《高层混凝土结构规程》中规定的特一级构造。中震时双向水平地震下墙肢全截面由轴向力产生的平均名义拉应力超过混凝土抗拉强度标准值时宜设置型钢承担拉力,且平均名义拉应力不宜超过两倍混凝土抗拉强度标准值(可按弹性模量换算考虑型钢和钢板的作用),全截面型钢和钢板的含钢率超过2.5%时可按比例适当放松。 学习永无止境…… 相关博文( Related Topics ) [1] [编程][软件][超限] 中震抗拉(2ftk)验算——含钢率计算工具 注释 ( Comments )   ( 如果您发现有错误,欢迎批评指正。邮箱:jidong_cui@163.com . 如果您喜欢这篇博文,请在上面给我 点个赞 吧!         ( If you found any mistakes in the post, please let …

[结构设计][规范][超限性能设计] “抗规”附录M抗震性能设计方法的材料“最小极限强度”

坚持实干、坚持实践、坚持积累、坚持思考,坚持创新。 《抗规》 GN 50011-2010 附录M ( 实现抗震性能设计目标的参考方法) 给出了等效线性方法进行抗震性能设计的具体方法。 其中,不同性能要求下构件承载力计算的材料取值也不同。 附录M 根据不同的要求,给出了3种材料取值进行构件承载能力计算。 包括“材料设计值”,“材料标准值”,及材料“最小极限强度值”。 其中最小极限强度值有以下具体操作方法: (1)钢材强度可取最小极限值,按《高层民用建筑钢结构技术规程》JGJ 99采用,约为钢材屈服强度的 1.35~1.5倍; (2)钢筋强度可取屈服强度的1.25倍; (3)混凝土强度可取立方体强度的0.88倍。(PS. 去掉了混凝土规范的各种调整系数,直接保留0.88,即仅考虑实际结构混凝土强度与试件混凝土强度的差异,而不考虑其他尺寸效应。) PS. 在使用软件的时候,需要注意软件验算的时候,到底使用了那个材料值。 注释 ( Comments )   ( 如果您发现有错误,欢迎批评指正。邮箱:jidong_cui@163.com . 如果您喜欢这篇博文,请在上面给我 点个赞 吧!         ( If you found …

[抗震设计][动力学][振型分解] 2001版及2010版抗震设计规范CQC振型耦联系数对比(Cross-Modal coefficients of CQC method)

坚持实干、坚持一线、坚持积累、坚持思考,坚持创新。 程序图标 ( Program LOGO ) 程序介绍 ( Program Introduction) CQC扭转耦联系数计算工具。Cross-Modal coefficients of CQC method in Chinese Seismic Code GB 50011-2001 and GB 50011-2010。 (1)振型扭转耦联系数与振型的周期比及阻尼比有关,在阻尼比一定的情况下,随着周期比的减小,耦联系数减小,并趋于0。即振型的周期越接近,扭转耦联系数越大,当振型周期(频率)相等时,扭转耦联系数为1。 (2)2001版及2010版抗震设计规范CQC振型耦联系数对比。2001版CQC扭转耦联系数是2010版扭转耦联系数的在阻尼比相等情况下的简化。当振型频率比较接近,振型之间阻尼比相差比较大时,两者相差比较大,即2001版规范的简化公式误差比较大。 程序图例 ( Program Gallery ) 注释 ( Comments )   ( 如果您发现有错误,欢迎批评指正。邮箱:jidong_cui@163.com . 如果您喜欢这篇博文,请在上面给我 点个赞 吧!  …

[结构设计][规范]隔震设计简化计算(抗规附录L)(Seismic Isolation)

坚持实干、坚持一线、坚持创新、坚持积累。 程序介绍 ( Program Introduction) 抗规附录L计算减隔震,实际没啥用。和小伙伴做的小软件,那时候小伙伴刚开始学习编程,主要用于编程训练,学习规范。 程序图例 ( Program Gallery ) 注释 ( Comments )   ( 如果您发现有错误,欢迎批评指正。邮箱:jidong_cui@163.com . 如果您喜欢这篇博文,请在上面给我 点个赞 吧!         ( If you found any mistakes in the post, please let me know. Email : jidong_cui@163.com. If you like this …

[结构设计][规范] 什么是重力荷载代表值?

          注释 ( Comments )   ( 如果您发现有错误,欢迎批评指正。邮箱:jidong_cui@163.com . 如果您喜欢这篇博文,请在上面给我 点个赞 吧!         ( If you found any mistakes in the post, please let me know. Email : jidong_cui@163.com. If you like this posts, please give …

[软件][工具] 核电厂抗震设计规范标准反应谱计算程序(GB 50267-97)

程序图标 ( Program Icon ) 程序介绍 ( Program Introduction) 《核电厂抗震设计规范》GB 50267-97 反应谱计算程序。主要是应网友要求添加的一个小程序。 同时制作这个小程序也可以发现,核电厂使用的反应谱与平时建筑结构规范的反应谱参数定义的方式不一样,而且实际出来的形状也和平时建筑结构规范的反应谱不太一样。核电规范谱通过在对数坐标系下给出特征值点的谱值给出规范谱的定义,如下图所示。 程序界面 ( Program Interface ) 保存数据,并在EXCEL中作图如下。 微信公众号 ( Wechat Subscription) 欢迎关注 “结构之旅” 微信公众号

[Tool]水电工程水工建筑物标准设计反应谱计算程序(NB 35047-2015)

程序基于《水电工程水工建筑物抗震设计规范》(NB35047-2015)编制,用于计算水电工程水工建筑物的标准设计反应谱。( This program is used for calculating the Seismic Design Spectrum for Hydraulic structures of Hydropower Project, Based on Chinese code NB 35047-2015. )规范的标准设计反应谱如下图所示,与《建筑抗震设计规范》(GB 50011-2010)规定设计反应谱有所不

SPECTR-1

[软件][工具] SPECTR (v1.0) – A program for Response Spectra Analysis [SPECTR地震波反应谱计算程序]

地震反应谱是地震工程中重要的概念,我们经常需要将地震加速度时程转换为反应谱。SPECTR 是一个简单易用的反应谱计算程序。Seismic Response Spectra is an important concept in earthquake engineering, we often need to evaluate seismic response spectrum on the basis of a given time-acceleration record. SPECTR constitutes an easy way to evaluate Seismic Response Spectra, featuring a user-friendly visual interface.