[书]PERFORM-3D原理与实例 – 第11章 – 橡胶隔震支座

除了摩擦摆隔震支座外,另一类常用的隔震支座为橡胶隔震支座。本章首先对几种常见的橡胶隔震支座(天然橡胶支座、铅芯橡胶支座及高阻尼橡胶支座)介绍,接着介绍常用的橡胶隔震支座的力学模型,在此基础上讨论PERFORM-3D[1, 2]中橡胶隔震支座单元的特性及参数定义方法,最后通过一榀橡胶隔震框架结构的地震时程分析实例,讲解PERFORM-3D中橡胶隔震支座结构的建模与分析基本过程。

[书]PERFORM-3D原理与实例 – 第10章 – 摩擦摆隔震支座

摩擦摆隔震支座是一种兼具摩擦耗能和摆动复位功能的金属隔震支座。相比于叠层橡胶隔震支座,摩擦摆型隔震支座能够更加高效地对隔震结构的自振特性进行控制,隔震层的设计对上部结构的质量和刚度等属性的依赖较小,使其应用更为简便。本章首先对摩擦摆隔震支座的基本概念和力学性能做简要介绍,在此基础上介绍PERFORM-3D[1,2]中的摩擦摆型隔震支座单元(Seismic Isolator Friction Pendulum),最后采用PERFORM-3D对一榀摩擦摆隔震框架结构进行动力时程分析,详细讲解PERFORM-3D中摩擦摆隔震支座单元的基本建模过程及参数定义方法。

[书]PERFORM-3D原理与实例 – 第9章 – 屈曲约束支撑

屈曲约束支撑(Buckling Restrained Brace,BRB)通过外包约束构造对钢支撑芯材的横向变形进行约束,避免了钢支撑芯材受压屈曲,使得支撑构件在轴向受拉与受压时均能达到材料屈服而不发生屈曲,充分发挥了钢支撑芯材的材料性能,相比于普通钢支撑,是一种耗能更好的支撑构件。本章首先对屈曲约束支撑的基本概念和力学性能做简要介绍,在此基础上介绍PERFORM-3D[1,2]的BRB组件及单元,最后采用PERFORM-3D对一屈曲约束支撑框架结构(Buckling Restrained Brace Frame,BRBF)的低周往复荷载试验进行模拟,详细讲解PERFORM-3D中BRB单元的基本建模过程及参数定义方法。

[书]PERFORM-3D原理与实例 – 第8章 – 粘滞阻尼器

结构耗能减震是指在主体结构中安装耗能组件,通过耗能组件的非线性滞回耗能,吸收地震输入结构中的能量,从而减轻主体结构的地震反应和损伤。此类耗能组件一般统称为阻尼器。根据阻尼器与位移和速率的相关性,可将阻尼器分为位移相关型阻尼器(如软钢阻尼器、摩擦阻尼器等)、速率相关型阻尼器(如粘滞阻尼器)、位移-速率相关型阻尼器(如粘弹性阻尼器)[1]。本章主要讨论粘滞阻尼器,首先对粘滞阻尼器的基本概念做简要介绍,在此基础上介绍PERFORM-3D[2,3]中提供的粘滞阻尼器组件及单元,最后采用PERFORM-3D对一带粘滞阻尼器支撑的框架结构进行地震动力时程分析,详细讲解PERFORM-3D中粘滞阻尼器单元的基本建模过程及参数定义方法。

[书]PERFORM-3D原理与实例 – 第7章 – 填充墙模拟

在传统的结构分析中,填充墙通常作为非结构构件考虑,在分析过程中,将其以外荷载的形式施加到结构上,并对整体结构的周期进行折减以考虑填充墙对结构刚度的贡献,未直接考虑填充墙对结构非线性行为的影响。相关研究表明[1,2],填充墙对结构的抗震性能有着重要的影响,在结构弹塑性分析中,应合理考虑填充墙的影响。本章首先对砌体填充墙的抗震性能及填充墙的数值模型进行介绍,并着重介绍了基于等效斜压杆的填充墙宏观模型的参数计算方法,最后采用PERFORM-3D[3,4]对一单跨框架填充墙结构的低周往复加载试验进行模拟,讲解PERORM-3D中采用等效斜压杆填充墙模型进行框架填充墙模拟的基本步骤与参数设置方法。In traditional structural analysis, infilled wall is usually considered as non-structural element, and its effect to structure performance was only considered by applying equivalent external load to the main structure and reducing the structure period, the contribution of infilled wall to the structural nonlinear behaviour was not considered directly. Relevant studies have shown that infilled wall has significant influence on both linear and nonlinear structural performance. Therefore, infilled wall should be reasonably considered in structural elasto-plastic analysis. In this chapter, the seismic performance and numerical model of masonry infilled wall was firstly introduced, and the parameters calculation method of the macroscopic infilled wall model based on equivalent diagonal strut theory was explained in detail. After that, a PERFORM-3D simulation of low-cyclic reversed load test of a single span infilled frame structure was conducted by step by step, to explain the fundamental modelling process and parameter definition method of the equivalent diagonal strut infilled wall model.

[书]PERFORM-3D原理与实例 – 第6章 – 剪力墙模拟

剪力墙的非线性分析模型可根据其基本假定的差异及单元自由度数量的多少划分为微观模型和宏观模型[1]。微观模型用实体或者板壳单元直接模拟剪力墙,原理清晰,但计算量大,收敛难以保证,宏观模型将剪力墙用多组非线性弹簧进行模拟,计算量小,试验分析校正相对简单,适用于结构整体弹塑性分析。PERFORM-3D[2,3]中提供了两种剪力墙宏观模型,包括能考虑单向压弯非线性的Shear Wall Element(剪力墙单元)及在此基础上进一步考虑复杂应力状态而开发的General Shear Wall Element(通用剪力墙单元)。其中Shear Wall单元采用的是多竖向弹簧单元模型(MVLEM)理论,为此,本章首先对MVLEM的研究背景及原理进行介绍,在此基础上介绍PERFORM-3D中提供的剪力墙组件及单元,最后采用PERFORM-3D中的Shear Wall单元对一悬臂剪力墙试件的拟静力试验进行模拟,详细讲解Shear Wall单元的基本建模过程和参数定义方法,并对模拟结果进行讨论。According to the difference of basic assumption and the number of degree of freedoms, the nonlinear analysis model of shear wall can be divided into microscopic model and macroscopic model. In microscopic model, shear wall is simulated by solid elements or shell elements. Microscopic model is clear in principle, but always has high calculation cost and the convergence is also difficult to assure. In macroscopic model, shear wall is simulated by multi-nonlinear-springs. When compared with microscopic model, macroscopic model always has lower computational cost and simpler parameters calibration process, which is suitable for elasto-plastic analysis of the whole structure. There are two types of shear wall macroscopic model in PERFORM-3D, including “Shear Wall Element” that can only consider one dimensional nonlinear bending and compression behaviour and “General Shear Wall Element” that can further consider complicated stress state. The Shear Wall Element adopts the theory of multi-vertical-line-element-model (MVLEM), therefore, the research background and the related theory of MVLEM was firstly introduced in this chapter. Then the shear wall components and elements in PERFORM-3D was further explained. After that, a pseudo-static test of cantilever shear wall was simulated by Shear Wall Element in PERFORM-3D. Through this simulation, fundamental modelling process, parameter definition, and interpretation of simulation results of Shear Wall Element were explained in detail.

[书]PERFORM-3D原理与实例 – 第5章 – 纤维截面模型

梁柱纤维截面模型的具体思路是将单元内部积分点处的截面离散为若干纤维,并假定截面满足平截面假定,由截面的曲率和中性轴的位置获得纤维应变,由纤维应变结合所采用的材料滞回本构关系获得纤维的应力,将纤维的应力沿截面积分可以获得截面的轴力和弯矩。纤维截面模型通过材料积分获得截面的内力-变形关系,与塑性铰模型直接给出截面内力-变形关系相比,在描述截面压弯耦合非线性行为方面有着更大的优势。本章将对PERFORM-3D[1,2]中的梁、柱纤维截面模型进行介绍。

[书]PERFORM-3D原理与实例 – 第4章 -塑性铰模型

集中塑性铰模型是梁、柱等杆系构件模拟中常用的一种模型。PERFORM-3D[1,2]中,塑性铰是一个截面组件(Component),通过将其与其他组件进行组装得到框架复合组件,用于模拟模拟梁、柱构件的非线性行为。PERFORM-3D包含两类塑性铰组件:弯矩型塑性铰(M铰)和弯矩-轴力相关型塑性铰(P-M-M铰),前者一般用来模拟截面轴力可以忽略的情况,比如梁端非线性行为,后者用来模拟截面轴力-弯矩相互作用的情况,比如柱端非线性行为。根据变形指标的不同,上述每种塑性铰又可以进一步分为转角型塑性铰(Rotation Type)和曲率型塑性铰(Curvature Type),前者用转角作为塑性铰变形的度量,后者用曲率作为塑性铰变形的度量。

[书]PERFORM-3D原理与实例 – 第3章 – 钢筋与混凝土材料的单轴本构关系

材料非线性问题是建筑结构非线性分析中经常涉及到的问题,计算中采用的材料本构模型是否合理,直接影响弹塑性分析结果的精度,进而影响建筑结构的抗震性能评估结果。本章首先对几种典型的钢筋与混凝土材料的单轴本构进行介绍,在此基础上对PERFORM-3D [1,2]中单轴本构的处理进行介绍,并结合PERFORM-3D的规则给出常用钢筋与混凝土材料的单轴本构定义方法。Material nonlinearity problems are very common in nonlinear structural analysis. Whether the nonlinear material model used in numerical calculation is reasonable directly influence the reliability of elastoplastic analysis results, which will further affect the seismic performance evaluation of structures. In this chapter, several typical uniaxial constitutive models of steel and concrete was first introduced. On this basis, uniaxial steel and concrete constitutive models in PERFORM-3D were explained in detail. The contents cover detailed explanation of the ‘YULRX’ backbone and the Hysteresis loops in PERFORM-3D. After that, uniaxial constitutive model properties for several commonly used steel and concrete materials were defined based on the rules of PERFORM-3D.

[书]PERFORM-3D原理与实例 – 第2章 – 入门实例:平面钢框架弹性分析

[书]PERFORM-3D原理与实例 – 第二章 – 入门实例:平面钢框架弹性分析.[Book] PERFORM-3D Theory and Tutorials – Chapter 2- Quick Start Example : Elastic Analysis of Plane Steel Frame.上一章对PERFORM-3D软件的设计思路和界面做了简要介绍,本章将通过一个平面钢框架的弹性分析算例,详细介绍PERFORM-3D中常规结构的建模、分析及结果查看的基本操作流程,以便初学者快速入门。The design philosophy and interface of PERFORM-3D were introduced briefly in last chapter. In this chapter we will introduce the details of basic operation of normal structure modelling and analysis results check in PERFORM-3D, through an example of planar steel frames elastic analysis, so that beginners can quickly start.

[书][PERFORM-3D原理与实例 – 前言]

[书][PERFORM-3D原理与实例 – 前言][Book][PERFORM-3D Theory and Tutorials – Foreword ]随着我国经济与技术的快速发展,近年来国内各地陆续出现各种高层、超高层及复杂结构体系,很多建筑超出了现有规范的适用范围,对于这类超限工程结构,采用传统的抗震设计方法已无法确保其安全性,目前工程中主要的做法是采用基于性能的抗震设计方法进行结构设计。基于性能的抗震设计方法与传统抗震设计方法的一个重要的不同之处在于必须通过非线性分析获得结构在罕遇地震作用下的力与变形需求,并依此进行抗震性能评估。为此,工程师必须系统、熟练地掌握一套可靠高效的结构非线性分析软件并能够对软件的非线性分析结果做出合理解读,这样才有可能完成复杂结构的非线性分析与抗震性能评估工作。PERFORM-3D(Nonlinear Analysis and Peformance Assessment for 3D Structures)由美国加州大学伯克利分校的鲍威尔教授(Prof. Granham H. Powell)教授开发,由美国著名的结构分析软件公司CSI(Computers & Structures Inc.)负责发行和维护,是一款致力于三维结构非线性分析和抗震性能评估的软件。PERFORM-3D拥有丰富的单元模型、高效的非线性分析算法及完善的结构性能评估系统,是一款同时适用于科研和工程的结构非线性分析软件,目前已广泛应用于我国结构抗震研究领域及实际工程实践中,是工程界和科研界认可度与接受度均较高的结构非线性分析及抗震性能评估软件。由于PERFORM-3D为英文软件,软件自带的英文帮助文档又涉及较多的力学知识与结构概念,导致初学者很难在短时间里掌握软件的使用方法及理解软件的精髓。目前市面上关于PERFORM-3D的书籍较少,且各有侧重,对于PERFORM-3D软件的学习仍显匮乏。为此,作者决心将自己学习弹塑性分析与PERFORM-3D的心得整理成书,以书会友,希望能帮助到有需要的朋友。众所周知,要想掌握一款结构分析软件,必须对软件的设计思路及涉及的理论知识有较好的把握,而理论知识是十分枯燥的,兴趣是学习理论知识的最好老师,而培养兴趣的最好方法是将理论和实践相结合。为此,本书将PERFORM-3D涉及的常用材料模型、单元模型及分析方法分成多个相互独立的章节进行讲解,每一个章节主要涉及一个独立的主题,如某种材料、单元或者分析方法,并针对该章内容设计一个本章特有的算例进行Step by Step地讲解,且在讲解算例前先对该章用到的理论知识及结构概念进行梳理,将软件的基本原理、基本操作、参数定义方法及使用技巧通过算例讲解有机地结合起来,使读者能够快速把握相关主题的关键点,并通过实例做到举一反三。

[PERFORM-3D][Tool] 工字形柱纤维截面工具 [Tool for Column Inelastic Fiber Section]

应网友要求,增加一个用于PERFORM-3D的工字形柱纤维截面剖分工具。针对PERFORM-3D软件的工字形截面柱纤维截面工具剖分小工具。程序通过导入文本参数(.csv),直接生成纤维截面的参数,并导出PERFORM-3D需要的二进制文件(.PF3CMP)。然后通过PERFORM-3D导入.PF3CMP文件完成繁琐的纤维截面输入工作,节省你的时间。

[论文][Paper]强震作用下基于构件性能的钢筋混凝土框架结构抗倒塌能力评估

以钢筋混凝土构件的变形性能指标限值为基础,建立基于构件性能的钢筋混凝土结构抗倒塌极限状态判别准则,并提出了”抗倒塌能力系数”的概念,用以定量评估结构的抗地震倒塌能力。在此基础上,按现行相关规范设计了27个典型钢筋混凝土框架结构,并采用文中建议的方法对结构在地震作用下的抗倒塌能力进行评估。结果表明:高度相同的框架结构,抗震等级越高,抗倒塌能力越强;抗震等级相同的框架结构,高度越大,抗倒塌能力越小;3层和6层框架结构的抗倒塌能力系数值大于1,具有足够的抗倒塌能力;抗震等级为二级的9层框架结构抗倒塌能力系数在0.5~0.8之间,应提高结构的抗倒塌能力;柱的轴压比和配筋率对框架结构的抗倒塌能力有较大的影响;框架结构层间位移角最大的楼层不一定是构件破坏最严重的楼层,仅用层间位移角评估结构的抗震性能尚有不足。

[论文][Paper]基于变形的框架-剪力墙结构抗震安全性评估

将结构整体变形和构件变形作为双重控制指标,提出了罕遇地震作用下结构的安全性评估方法,对按GB 50011—2010《建筑抗震设计规范》设计的典型框架-剪力墙结构在罕遇地震作用下的安全性进行评估。结果表明:以层间位移角作为大震性能评估的唯一标准存在不足,结构的最大层间位移角与结构构件损伤没有直接关系,统计得出框架-剪力墙结构首层层间位移角限值为1/200;引入长周期反应谱影响系数以考虑地震波反应谱形状的影响,并给出建议影响系数取值为0.9~1.05;Ⅱ类~Ⅳ类场地土中7度及7.5度抗震设防的模型均满足安全性要求,8度设防出现个别模型不满足安全性要求。

[论文][Paper]基于构件变形的钢筋混凝土剪力墙结构抗震性能研究

以钢筋混凝土构件的变形性能指标限值为基础,提出基于构件性能的钢筋混凝土剪力墙结构抗震性能判定准则和评估方法,并给出结构“抗大震能力储备系数”的概念,用以定量评估结构抵抗特大地震的能力储备。在此基础上,按现行规范设计了27个剪力墙结构模型$采用有限元分析软件PERFORM-3D进行弹塑性动力时程分析和IDA分析,并采用文中提出的结构性能判定准则和方法对结构进行性能评估。结果表明,剪力墙结构层间位移角大小与构件损伤程度不相符合,仅用层间位移角评估结构的抗震性能尚有不足;在7度0.1g、7度0.15g、8度0.2g抗震设防烈度下,场地特征周期为0.35s和0.45s的结构能够满足规定的性能要求,场地特征周期为0.65s的结构大多不能满足性能要求;按0.35s和0.45s场地特征周期设计的结构抗大震能力储备系数大多在1.2~1.4,具有一定的抵抗特大地震的能力储备。

[PERFORM-3D][Tool] 混凝土柱(带保护层)纤维截面工具 [Tool for Column Inelastic Fiber Section]

混凝土柱(带保护层)纤维截面工具 [Tool for Column Inelastic Fiber Section]。同样是应网友的要求,增加一个考虑保护层的纤维柱截面剖分工具,用处不太大,也放上来和大家分享。这些小工具主要是方便研究,学习软件,做软件测试用的。对于初学PERFORM-3D的同学可以看看。

[PERFORM-3D] A discussion of two methods of conducting low-frequency cyclic test modeling in PERFORM-3D [关于PERFORM-3D中低周往复试验模拟的两种方法的探讨]

A discussion of two methods of conducting low-frequency cyclic test modeling in PERFORM-3D。关于PERFORM-3D中低周往复试验模拟的两种方法的探讨。